376 research outputs found
The Definition of Mach's Principle
Two definitions of Mach's principle are proposed. Both are related to gauge
theory, are universal in scope and amount to formulations of causality that
take into account the relational nature of position, time, and size. One of
them leads directly to general relativity and may have relevance to the problem
of creating a quantum theory of gravity.Comment: To be published in Foundations of Physics as invited contribution to
Peter Mittelstaedt's 80th Birthday Festschrift. 30 page
There exist non orthogonal quantum measurements that are perfectly repeatable
We show that, contrarily to the widespread belief, in quantum mechanics
repeatable measurements are not necessarily described by orthogonal
projectors--the customary paradigm of "observable". Nonorthogonal
repeatability, however, occurs only for infinite dimensions. We also show that
when a non orthogonal repeatable measurement is performed, the measured system
retains some "memory" of the number of times that the measurement has been
performed.Comment: 4 pages, 1 figure, revtex4, minor change
A quantum logical and geometrical approach to the study of improper mixtures
We study improper mixtures from a quantum logical and geometrical point of
view. Taking into account the fact that improper mixtures do not admit an
ignorance interpretation and must be considered as states in their own right,
we do not follow the standard approach which considers improper mixtures as
measures over the algebra of projections. Instead of it, we use the convex set
of states in order to construct a new lattice whose atoms are all physical
states: pure states and improper mixtures. This is done in order to overcome
one of the problems which appear in the standard quantum logical formalism,
namely, that for a subsystem of a larger system in an entangled state, the
conjunction of all actual properties of the subsystem does not yield its actual
state. In fact, its state is an improper mixture and cannot be represented in
the von Neumann lattice as a minimal property which determines all other
properties as is the case for pure states or classical systems. The new lattice
also contains all propositions of the von Neumann lattice. We argue that this
extension expresses in an algebraic form the fact that -alike the classical
case- quantum interactions produce non trivial correlations between the
systems. Finally, we study the maps which can be defined between the extended
lattice of a compound system and the lattices of its subsystems.Comment: submitted to the Journal of Mathematical Physic
Recommended from our members
A compilation of observations from moored current meters. Vol. VIII. Wind, currents and temperature off Northwest Africa along 21°40' N during JOINT-1
Current meters, moored during JOINT-I in the coastal upwelling area off Northwest Africa along 21°40'N measured current speed and direction, temperature and, in some cases, conductivity and pressure. In addition, surface buoy meterological stations were installed at some current meter strings to record wind speed and direction, as well as air and water temperature.
The sampling intervals of the instruments were 5 and 10 minutes. The data have been filtered and are shown here by means of pertinent statistics, real time plots, progressive vector diagrams and rotary spectra of hourly values
A geometrical origin for the covariant entropy bound
Causal diamond-shaped subsets of space-time are naturally associated with
operator algebras in quantum field theory, and they are also related to the
Bousso covariant entropy bound. In this work we argue that the net of these
causal sets to which are assigned the local operator algebras of quantum
theories should be taken to be non orthomodular if there is some lowest scale
for the description of space-time as a manifold. This geometry can be related
to a reduction in the degrees of freedom of the holographic type under certain
natural conditions for the local algebras. A non orthomodular net of causal
sets that implements the cutoff in a covariant manner is constructed. It gives
an explanation, in a simple example, of the non positive expansion condition
for light-sheet selection in the covariant entropy bound. It also suggests a
different covariant formulation of entropy bound.Comment: 20 pages, 8 figures, final versio
The development of path integration: combining estimations of distance and heading
Efficient daily navigation is underpinned by path integration, the mechanism by which we use self-movement information to update our position in space. This process is well-understood in adulthood, but there has been relatively little study of path integration in childhood, leading to an underrepresentation in accounts of navigational development. Previous research has shown that calculation of distance and heading both tend to be less accurate in children as they are in adults, although there have been no studies of the combined calculation of distance and heading that typifies naturalistic path integration. In the present study 5-year-olds and 7-year-olds took part in a triangle-completion task, where they were required to return to the startpoint of a multi-element path using only idiothetic information. Performance was compared to a sample of adult participants, who were found to be more accurate than children on measures of landing error, heading error, and distance error. 7-year-olds were significantly more accurate than 5-year-olds on measures of landing error and heading error, although the difference between groups was much smaller for distance error. All measures were reliably correlated with age, demonstrating a clear development of path integration abilities within the age range tested. Taken together, these data make a strong case for the inclusion of path integration within developmental models of spatial navigational processing
Realism and the wave-function
Realism -- the idea that the concepts in physical theories refer to 'things'
existing in the real world -- is introduced as a tool to analyze the status of
the wave-function. Although the physical entities are recognized by the
existence of invariant quantities, examples from classical and quantum physics
suggest that not all the theoretical terms refer to the entities: some terms
refer to properties of the entities, and some terms have only an epistemic
function. In particular, it is argued that the wave-function may be written in
terms of classical non-referring and epistemic terms. The implications for
realist interpretations of quantum mechanics and on the teaching of quantum
physics are examined.Comment: No figure
Dynamical Semigroup Description of Coherent and Incoherent Particle-Matter Interaction
The meaning of statistical experiments with single microsystems in quantum
mechanics is discussed and a general model in the framework of non-relativistic
quantum field theory is proposed, to describe both coherent and incoherent
interaction of a single microsystem with matter. Compactly developing the
calculations with superoperators, it is shown that the introduction of a time
scale, linked to irreversibility of the reduced dynamics, directly leads to a
dynamical semigroup expressed in terms of quantities typical of scattering
theory. Its generator consists of two terms, the first linked to a coherent
wavelike behaviour, the second related to an interaction having a measuring
character, possibly connected to events the microsystem produces propagating
inside matter. In case these events breed a measurement, an explicit
realization of some concepts of modern quantum mechanics ("effects" and
"operations") arises. The relevance of this description to a recent debate
questioning the validity of ordinary quantum mechanics to account for such
experimental situations as, e.g., neutron-interferometry, is briefly discussed.Comment: 22 pages, latex, no figure
Classical Vs Quantum Probability in Sequential Measurements
We demonstrate in this paper that the probabilities for sequential
measurements have features very different from those of single-time
measurements. First, they cannot be modelled by a classical stochastic process.
Second, they are contextual, namely they depend strongly on the specific
measurement scheme through which they are determined. We construct
Positive-Operator-Valued measures (POVM) that provide such probabilities. For
observables with continuous spectrum, the constructed POVMs depend strongly on
the resolution of the measurement device, a conclusion that persists even if we
consider a quantum mechanical measurement device or the presence of an
environment. We then examine the same issues in alternative interpretations of
quantum theory. We first show that multi-time probabilities cannot be naturally
defined in terms of a frequency operator. We next prove that local hidden
variable theories cannot reproduce the predictions of quantum theory for
sequential measurements, even when the degrees of freedom of the measuring
apparatus are taken into account. Bohmian mechanics, however, does not fall in
this category. We finally examine an alternative proposal that sequential
measurements can be modelled by a process that does not satisfy the Kolmogorov
axioms of probability. This removes contextuality without introducing
non-locality, but implies that the empirical probabilities cannot be always
defined (the event frequencies do not converge). We argue that the predictions
of this hypothesis are not ruled out by existing experimental results
(examining in particular the "which way" experiments); they are, however,
distinguishable in principle.Comment: 56 pages, latex; revised and restructured. Version to appear in
Found. Phy
Poincare gauge invariance and gravitation in Minkowski spacetime
A formulation of Poincare symmetry as an inner symmetry of field theories
defined on a fixed Minkowski spacetime is given. Local P gauge transformations
and the corresponding covariant derivative with P gauge fields are introduced.
The renormalization properties of scalar, spinor and vector fields in P gauge
field backgrounds are determined. A minimal gauge field dynamics consistent
with the renormalization constraints is given.Comment: 36 pages, latex-fil
- âŠ