314 research outputs found
Laplace's rule of succession in information geometry
Laplace's "add-one" rule of succession modifies the observed frequencies in a
sequence of heads and tails by adding one to the observed counts. This improves
prediction by avoiding zero probabilities and corresponds to a uniform Bayesian
prior on the parameter. The canonical Jeffreys prior corresponds to the
"add-one-half" rule. We prove that, for exponential families of distributions,
such Bayesian predictors can be approximated by taking the average of the
maximum likelihood predictor and the \emph{sequential normalized maximum
likelihood} predictor from information theory. Thus in this case it is possible
to approximate Bayesian predictors without the cost of integrating or sampling
in parameter space
Bubble dynamics in DNA
The formation of local denaturation zones (bubbles) in double-stranded DNA is
an important example for conformational changes of biological macromolecules.
We study the dynamics of bubble formation in terms of a Fokker-Planck equation
for the probability density to find a bubble of size n base pairs at time t, on
the basis of the free energy in the Poland-Scheraga model. Characteristic
bubble closing and opening times can be determined from the corresponding first
passage time problem, and are sensitive to the specific parameters entering the
model. A multistate unzipping model with constant rates recently applied to DNA
breathing dynamics [G. Altan-Bonnet et al, Phys. Rev. Lett. 90, 138101 (2003)]
emerges as a limiting case.Comment: 9 pages, 2 figure
Decay of isolated surface features driven by the Gibbs-Thomson effect in analytic model and simulation
A theory based on the thermodynamic Gibbs-Thomson relation is presented which
provides the framework for understanding the time evolution of isolated
nanoscale features (i.e., islands and pits) on surfaces. Two limiting cases are
predicted, in which either diffusion or interface transfer is the limiting
process. These cases correspond to similar regimes considered in previous works
addressing the Ostwald ripening of ensembles of features. A third possible
limiting case is noted for the special geometry of "stacked" islands. In these
limiting cases, isolated features are predicted to decay in size with a power
law scaling in time: A is proportional to (t0-t)^n, where A is the area of the
feature, t0 is the time at which the feature disappears, and n=2/3 or 1. The
constant of proportionality is related to parameters describing both the
kinetic and equilibrium properties of the surface. A continuous time Monte
Carlo simulation is used to test the application of this theory to generic
surfaces with atomic scale features. A new method is described to obtain
macroscopic kinetic parameters describing interfaces in such simulations.
Simulation and analytic theory are compared directly, using measurements of the
simulation to determine the constants of the analytic theory. Agreement between
the two is very good over a range of surface parameters, suggesting that the
analytic theory properly captures the necessary physics. It is anticipated that
the simulation will be useful in modeling complex surface geometries often seen
in experiments on physical surfaces, for which application of the analytic
model is not straightforward.Comment: RevTeX (with .bbl file), 25 pages, 7 figures from 9 Postscript files
embedded using epsf. Submitted to Phys. Rev. B A few minor changes made on
9/24/9
Weak selection and stability of localized distributions in Ostwald ripening
We support and generalize a weak selection rule predicted recently for the
self-similar asymptotics of the distribution function (DF) in the
zero-volume-fraction limit of Ostwald ripening (OR). An asymptotic perturbation
theory is developed that, when combined with an exact invariance property of
the system, yields the selection rule, predicts a power-law convergence towards
the selected self-similar DF and agrees well with our numerical simulations for
the interface- and diffusion-controlled OR.Comment: 4 pages, 2 figures, submitted to PR
MicroRNAs targeting oncogenes are down-regulated in pancreatic malignant transformation from benign tumors
BACKGROUND
MicroRNA (miRNA) expression profiles have been described in pancreatic ductal adenocarcinoma (PDAC), but these have not been compared with pre-malignant pancreatic tumors. We wished to compare the miRNA expression signatures in pancreatic benign cystic tumors (BCT) of low and high malignant potential with PDAC, in order to identify miRNAs deregulated during PDAC development. The mechanistic consequences of miRNA dysregulation were further evaluated.
METHODS
Tissue samples were obtained at a tertiary pancreatic unit from individuals with BCT and PDAC. MiRNA profiling was performed using a custom microarray and results were validated using RT-qPCR prior to evaluation of miRNA targets.
RESULTS
Widespread miRNA down-regulation was observed in PDAC compared to low malignant potential BCT. We show that amongst those miRNAs down-regulated, miR-16, miR-126 and let-7d regulate known PDAC oncogenes (targeting BCL2, CRK and KRAS respectively). Notably, miR-126 also directly targets the KRAS transcript at a "seedless" binding site within its 3'UTR. In clinical specimens, miR-126 was strongly down-regulated in PDAC tissues, with an associated elevation in KRAS and CRK proteins. Furthermore, miR-21, a known oncogenic miRNA in pancreatic and other cancers, was not elevated in PDAC compared to serous microcystic adenoma (SMCA), but in both groups it was up-regulated compared to normal pancreas, implicating early up-regulation during malignant change.
CONCLUSIONS
Expression profiling revealed 21 miRNAs down-regulated in PDAC compared to SMCA, the most benign lesion that rarely progresses to invasive carcinoma. It appears that miR-21 up-regulation is an early event in the transformation from normal pancreatic tissue. MiRNA expression has the potential to distinguish PDAC from normal pancreas and BCT. Mechanistically the down-regulation of miR-16, miR-126 and let-7d promotes PDAC transformation by post-transcriptional up-regulation of crucial PDAC oncogenes. We show that miR-126 is able to directly target KRAS; re-expression has the potential as a therapeutic strategy against PDAC and other KRAS-driven cancers
Fluorescence correlation spectroscopy of the binding of nucleotide excision repair protein XPC-hHr23B with DNA substrates
The interaction of the nucleotide excision repair (NER) protein dimeric complex XPC-hHR23B, which is implicated in the DNA damage recognition step, with three Cy3.5 labeled 90-bp double-stranded DNA substrates (unmodified, with a central unpaired region, and cholesterol modified) and a 90-mer single-strand DNA was investigated in solution by fluorescence correlation spectroscopy. Autocorrelation functions obtained in the presence of an excess of protein show larger diffusion times (τ d) than for free DNA, indicating the presence of DNA-protein bound complexes. The fraction of DNA bound (θ), as a way to describe the percentage of protein bound to DNA, was directly estimated from FCS data. A significantly stronger binding capability for the cholesterol modified substrate (78% DNA bound) than for other double-stranded DNA substrates was observed, while the lowest affinity was found for the single-stranded DNA (27%). This is in accordance with a damage recognition role of the XPC protein. The similar affinity of XPC for undamaged and 'bubble' DNA sub
Automatic Analysis of Composite Physical Signals Using Non-Negative Factorization and Information Criterion
In time-resolved spectroscopy, composite signal sequences representing energy transfer in fluorescence materials are measured, and the physical characteristics of the materials are analyzed. Each signal sequence is represented by a sum of non-negative signal components, which are expressed by model functions. For analyzing the physical characteristics of a measured signal sequence, the parameters of the model functions are estimated. Furthermore, in order to quantitatively analyze real measurement data and to reduce the risk of improper decisions, it is necessary to obtain the statistical characteristics from several sequences rather than just a single sequence. In the present paper, we propose an automatic method by which to analyze composite signals using non-negative factorization and an information criterion. The proposed method decomposes the composite signal sequences using non-negative factorization subjected to parametric base functions. The number of components (i.e., rank) is also estimated using Akaike's information criterion. Experiments using simulated and real data reveal that the proposed method automatically estimates the acceptable ranks and parameters
miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells
Glioblastoma multiforme (GBM) is an invariably fatal central nervous system tumor despite treatment with surgery, radiation, and chemotherapy. Further insights into the molecular and cellular mechanisms that drive GBM formation are required to improve patient outcome. MicroRNAs are emerging as important regulators of cellular differentiation and proliferation, and have been implicated in the etiology of a variety of cancers, yet the role of microRNAs in GBM remains poorly understood. In this study, we investigated the role of microRNAs in regulating the differentiation and proliferation of neural stem cells and glioblastoma-multiforme tumor cells.status: publishe
Autoluminescent Plants
Prospects of obtaining plants glowing in the dark have captivated the imagination of scientists and layman alike. While light emission has been developed into a useful marker of gene expression, bioluminescence in plants remained dependent on externally supplied substrate. Evolutionary conservation of the prokaryotic gene expression machinery enabled expression of the six genes of the lux operon in chloroplasts yielding plants that are capable of autonomous light emission. This work demonstrates that complex metabolic pathways of prokaryotes can be reconstructed and function in plant chloroplasts and that transplastomic plants can emit light that is visible by naked eye
- …