48 research outputs found

    Asymmetrical representation of body orientation

    Get PDF
    The perceived orientation of objects, gravity, and the body are biased to the left. Whether this leftward bias is attributable to biases in sensing or processing vestibular, visual, and body sense cues has never been assessed directly. The orientation in which characters are most easily recognized-the perceived upright (PU)-can be well predicted from a weighted vector sum of these sensory cues. A simple form of this model assumes that the directions of the contributing inputs are coded accurately and as a consequence participants tilted leftor right-side-down relative to gravity should exhibit mirror symmetric patterns of responses. If a left/right asymmetry were present then varying these sensory cues could be used to assess in which sensory modality or modalities a PU bias may have arisen. Participants completed the Oriented Character Recognition Test (OCHART) while manipulating body posture and visual orientation cues relative to gravity. The response patterns showed systematic differences depending on which side they were tilted. An asymmetry of the PU was found to be best modeled by adding a leftward bias of 5.68 to the perceived orientation of the body relative to its actual orientation relative to the head. The asymmetry in the effect of body orientation is reminiscent of the body-defined left-leaning asymmetry in the perceived direction of light coming from above and reports that people tend to adopt a right-leaning posture

    Vestibular Facilitation of Optic Flow Parsing

    Get PDF
    Simultaneous object motion and self-motion give rise to complex patterns of retinal image motion. In order to estimate object motion accurately, the brain must parse this complex retinal motion into self-motion and object motion components. Although this computational problem can be solved, in principle, through purely visual mechanisms, extra-retinal information that arises from the vestibular system during self-motion may also play an important role. Here we investigate whether combining vestibular and visual self-motion information improves the precision of object motion estimates. Subjects were asked to discriminate the direction of object motion in the presence of simultaneous self-motion, depicted either by visual cues alone (i.e. optic flow) or by combined visual/vestibular stimuli. We report a small but significant improvement in object motion discrimination thresholds with the addition of vestibular cues. This improvement was greatest for eccentric heading directions and negligible for forward movement, a finding that could reflect increased relative reliability of vestibular versus visual cues for eccentric heading directions. Overall, these results are consistent with the hypothesis that vestibular inputs can help parse retinal image motion into self-motion and object motion components

    A review of abnormalities in the perception of visual illusions in schizophrenia

    Get PDF
    Specific abnormalities of vision in schizophrenia have been observed to affect high-level and some low-level integration mechanisms, suggesting that people with schizophrenia may experience anomalies across different stages in the visual system affecting either early or late processing or both. Here, we review the research into visual illusion perception in schizophrenia and the issues which previous research has faced. One general finding that emerged from the literature is that those with schizophrenia are mostly immune to the effects of high-level illusory displays, but this effect is not consistent across all low-level illusions. The present review suggests that this resistance is due to the weakening of top–down perceptual mechanisms and may be relevant to the understanding of symptoms of visual distortion rather than hallucinations as previously thought

    Perceived Surface Slant Is Systematically Biased in the Actively-Generated Optic Flow

    Get PDF
    Humans make systematic errors in the 3D interpretation of the optic flow in both passive and active vision. These systematic distortions can be predicted by a biologically-inspired model which disregards self-motion information resulting from head movements (Caudek, Fantoni, & Domini 2011). Here, we tested two predictions of this model: (1) A plane that is stationary in an earth-fixed reference frame will be perceived as changing its slant if the movement of the observer's head causes a variation of the optic flow; (2) a surface that rotates in an earth-fixed reference frame will be perceived to be stationary, if the surface rotation is appropriately yoked to the head movement so as to generate a variation of the surface slant but not of the optic flow. Both predictions were corroborated by two experiments in which observers judged the perceived slant of a random-dot planar surface during egomotion. We found qualitatively similar biases for monocular and binocular viewing of the simulated surfaces, although, in principle, the simultaneous presence of disparity and motion cues allows for a veridical recovery of surface slant

    Is an internal model of head orientation necessary for oculomotor control?

    No full text
    In order to test whether the control of eye movement in response to head movement requires an internal model of head orientation or instead can rely on directly sensing information about head orientation and movement, perceived gravity was separated from physical gravity to see which dominated the eye-movement response. Internal model theory suggests that the oculomotor response should be driven by perceived, internalized gravity, whereas the direct sensing theory predicts it should always be driven by vestibularly sensed gravity. Subjects lay on an airbed either supine or on their side and were sinusoidally translated along their dorsoventral body axis. The direction of perceived gravity was separated from physical gravity by performing the experiments in a room built on its side with the direction of its "floor" orthogonal to both physical gravity and the subjectlsquo;s translation. The swinging sum of the imposed sinusoidal acceleration with physical gravity was thus in a plane orthogon al t o its sum with perceived gravity. Oculomotor responses to these swinging vectors were looked for and responses were found only to the sum of the acceleration with physical gravity, not perceived gravity. It was concluded that an internal model is not used to drive these compensatory eye movements

    Multisensory determinants of orientation perception: task specific sex differences

    No full text
    Females have been reported to be more ‘visually dependent’ than males. When aligning a rod in a tilted frame to vertical, females are more influenced by the frame than are males, who align the rod closer to gravity. Do females rely more on visual information at the cost of other sensory information? We compared the subjective visual vertical and the perceptual upright in 29 females and 24 males. The orientation of visual cues presented on a shrouded laptop screen and of the observer’s posture were varied. When upright, females’ subjective visual vertical was more influenced by visual cues and their responses were more variable than were males’. However, there were no differences between the sexes in the perceptual upright task. Individual variance in subjective visual vertical judgments and in the perceptual upright predicted the level of visual dependence across both sexes. When lying right-side down, there were no reliable differences between the sexes in either measure. We conclude that heightened ‘visual dependence’ in females does not generalize to all aspects of spatial processing but is probably attributable to task-specific differences in the mechanisms of sensory processing in the brains of females and males. The higher variability and lower accuracy in females for some spatial tasks is not due to their having qualitatively worse access to information concerning either the gravity axis or corporeal representation: it is only when gravity and the long body axis align that females have a performance disadvantage
    corecore