13,145 research outputs found
Algorithms for entanglement renormalization
We describe an iterative method to optimize the multi-scale entanglement
renormalization ansatz (MERA) for the low-energy subspace of local Hamiltonians
on a D-dimensional lattice. For translation invariant systems the cost of this
optimization is logarithmic in the linear system size. Specialized algorithms
for the treatment of infinite systems are also described. Benchmark simulation
results are presented for a variety of 1D systems, namely Ising, Potts, XX and
Heisenberg models. The potential to compute expected values of local
observables, energy gaps and correlators is investigated.Comment: 23 pages, 28 figure
Entropy of Folding of the Triangular Lattice
The problem of counting the different ways of folding the planar triangular
lattice is shown to be equivalent to that of counting the possible 3-colorings
of its bonds, a dual version of the 3-coloring problem of the hexagonal lattice
solved by Baxter. The folding entropy Log q per triangle is thus given by
Baxter's formula q=sqrt(3)(Gamma[1/3])^(3/2)/2pi =1.2087...Comment: 9 pages, harvmac, epsf, uuencoded, 5 figures included, Saclay
preprint T/9401
The Initial Conditions of Clustered Star Formation. II. N2H+ Observations of the Ophiuchus B Core
We present a Nobeyama 45 m Radio Telescope map and Australia Telescope
Compact Array pointed observations of N2H+ 1-0 emission towards the clustered,
low mass star forming Oph B Core within the Ophiuchus molecular cloud. We
compare these data with previously published results of high resolution NH3
(1,1) and (2,2) observations in Oph B. We use 3D Clumpfind to identify emission
features in the single-dish N2H+ map, and find that the N2H+ `clumps' match
well similar features previously identified in NH3 (1,1) emission, but are
frequently offset to clumps identified at similar resolution in 850 micron
continuum emission. Wide line widths in the Oph B2 sub-Core indicate
non-thermal motions dominate the Core kinematics, and remain transonic at
densities n ~ 3 x 10^5 cm^-3 with large scatter and no trend with N(H2).
Non-thermal motions in Oph B1 and B3 are subsonic with little variation, but
also show no trend with H2 column density. Over all Oph B, non-thermal N2H+
line widths are substantially narrower than those traced by NH3, making it
unlikely NH3 and N2H+ trace the same material, but the v_LSR of both species
agree well. We find evidence for accretion in Oph B1 from the surrounding
ambient gas. The NH3/N2H+ abundance ratio is larger towards starless Oph B1
than towards protostellar Oph B2, similar to recent observational results in
other star-forming regions. Small-scale structure is found in the ATCA N2H+ 1-0
emission, where emission peaks are again offset from continuum emission. In
particular, the ~1 M_Sun B2-MM8 clump is associated with a N2H+ emission
minimum and surrounded by a broken ring-like N2H+ emission structure,
suggestive of N2H+ depletion. We find a strong general trend of decreasing N2H+
abundance with increasing N(H2) in Oph B which matches that found for NH3.Comment: 55 pages (manuscript), 15 figures, ApJ accepte
Critical and Multicritical Semi-Random (1+d)-Dimensional Lattices and Hard Objects in d Dimensions
We investigate models of (1+d)-D Lorentzian semi-random lattices with one
random (space-like) direction and d regular (time-like) ones. We prove a
general inversion formula expressing the partition function of these models as
the inverse of that of hard objects in d dimensions. This allows for an exact
solution of a variety of new models including critical and multicritical
generalized (1+1)-D Lorentzian surfaces, with fractal dimensions ,
k=1,2,3,..., as well as a new model of (1+2)-D critical tetrahedral complexes,
with fractal dimension . Critical exponents and universal scaling
functions follow from this solution. We finally establish a general connection
between (1+d)-D Lorentzian lattices and directed-site lattice animals in (1+d)
dimensions.Comment: 44 pages, 15 figures, tex, harvmac, epsf, references adde
Abundant cyanopolyynes as a probe of infall in the Serpens South cluster-forming region
We have detected bright HC7N J = 21-20 emission toward multiple locations in
the Serpens South cluster-forming region using the K-Band Focal Plane Array at
the Robert C. Byrd Green Bank Telescope. HC7N is seen primarily toward cold
filamentary structures that have yet to form stars, largely avoiding the dense
gas associated with small protostellar groups and the main central cluster of
Serpens South. Where detected, the HC7N abundances are similar to those found
in other nearby star forming regions. Toward some HC7N `clumps', we find
consistent variations in the line centroids relative to NH3 (1,1) emission, as
well as systematic increases in the HC7N non-thermal line widths, which we
argue reveal infall motions onto dense filaments within Serpens South with
minimum mass accretion rates of M ~ 2-5 M_sun Myr^-1. The relative abundance of
NH3 to HC7N suggests that the HC7N is tracing gas that has been at densities n
~ 10^4 cm^-3, for timescales t < 1-2 x 10^5 yr. Since HC7N emission peaks are
rarely co-located with those of either NH3 or continuum, it is likely that
Serpens South is not particularly remarkable in its abundance of HC7N, but
instead the serendipitous mapping of HC7N simultaneously with NH3 has allowed
us to detect HC7N at low abundances in regions where it otherwise may not have
been looked for. This result extends the known star-forming regions containing
significant HC7N emission from typically quiescent regions, like the Taurus
molecular cloud, to more complex, active environments.Comment: 19 pages, 13 figures, accepted to MNRAS. Version with full resolution
figures available at http://www.dunlap.utoronto.ca/~friesen/Friesen_HC7N.pd
Thermopower in the Coulomb blockade regime for Laughlin quantum dots
Using the conformal field theory partition function of a Coulomb-blockaded
quantum dot, constructed by two quantum point contacts in a Laughlin quantum
Hall bar, we derive the finite-temperature thermodynamic expression for the
thermopower in the linear-response regime. The low-temperature results for the
thermopower are compared to those for the conductance and their capability to
reveal the structure of the single-electron spectrum in the quantum dot is
analyzed.Comment: 11 pages, 3 figures, Proceedings of the 10-th International Workshop
"Lie Theory and Its Applications in Physics", 17-23 June 2013, Varna,
Bulgari
A transfer matrix approach to the enumeration of plane meanders
A closed plane meander of order is a closed self-avoiding curve
intersecting an infinite line times. Meanders are considered distinct up
to any smooth deformation leaving the line fixed. We have developed an improved
algorithm, based on transfer matrix methods, for the enumeration of plane
meanders. While the algorithm has exponential complexity, its rate of growth is
much smaller than that of previous algorithms. The algorithm is easily modified
to enumerate various systems of closed meanders, semi-meanders, open meanders
and many other geometries.Comment: 13 pages, 9 eps figures, to appear in J. Phys.
A path model for Whittaker vectors
40 pages, 2 figuresIn this paper we construct weighted path models to compute Whittaker vectors in the completion of Verma modules, as well as Whittaker functions of fundamental type, for all finite-dimensional simple Lie algebras, affine Lie algebras, and the quantum algebra . This leads to series expressions for the Whittaker functions. We show how this construction leads directly to the quantum Toda equations satisfied by these functions, and to the -difference equations in the quantum case. We investigate the critical limit of affine Whittaker functions computed in this way
- …
