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We describe an iterative method to optimize the multiscale entanglement renormalization ansatz for the
low-energy subspace of local Hamiltonians on a D-dimensional lattice. For translation-invariant systems the
cost of this optimization is logarithmic in the linear system size. Specialized algorithms for the treatment of
infinite systems are also described. Benchmark simulation results are presented for a variety of one-
dimensional systems, namely, Ising, Potts, XX, and Heisenberg models. The potential to compute expected
values of local observables, energy gaps, and correlators is investigated.
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I. INTRODUCTION

Entanglement renormalization1 is a numerical technique
based on locally reorganizing the Hilbert space of a quantum
many-body system with the aim to reduce the amount of
entanglement in its wave function. It was introduced to ad-
dress a major computational obstacle in real-space
renormalization-group �RG� methods,2–4 responsible for
limitations in their performance and range of applicability,
namely, the proliferation of degrees of freedom that occurs
under successive applications of a RG transformation.

Entanglement renormalization is built around the assump-
tion that, as a result of the local character of physical inter-
actions, some of the relevant degrees of freedom in the
ground state of a many-body system can be decoupled from
the rest by unitarily transforming small regions of space.
Accordingly, unitary transformations known as disentanglers
are applied locally to the system in order to identify and
decouple such degrees of freedom, which are then safely
removed and therefore do no longer appear in any subse-
quent coarse-grained description. This prevents the harmful
accumulation of degrees of freedom and thus leads to a sus-
tainable real-space RG transformation, able to explore arbi-
trarily large one-dimensional �1D� and two-dimensional �2D�
lattice systems, even at a quantum critical point. It also leads
to the multiscale entanglement renormalization ansatz
�MERA�, a variational ansatz for many-body states.5

The MERA, based in turn on a class of quantum circuits,
is particularly successful at describing ground states at quan-
tum criticality1,5–11 or with topological order.12,13 From the
computational viewpoint, the key property of the MERA is
that it can be manipulated efficiently, due to the causal struc-
ture of the underlying quantum circuit.5 As a result, it is
possible to efficiently evaluate the expected value of local
observables, and to efficiently optimize its tensors. Thus,
well-established simulation techniques for matrix product
states, such as energy minimization14 or simulation of time
evolution,15 can be readily generalized to the MERA.16–18

In this paper we describe a simple algorithm �and several
variations thereof� to compute an approximation of the low-
energy subspace of a local Hamiltonian with the MERA, and
present benchmark calculations for 1D lattice systems. Our
goal is to provide the interested reader with a rather self-
contained explanation of the algorithm, with enough infor-

mation to implement it. Sections II and III review and elabo-
rate on the theoretical foundations of the MERA,1,5 and
establish the notation and nomenclature used in the rest of
the paper. Specifically, Sec. II presents the MERA, both from
the perspective of quantum circuits and of the renormaliza-
tion group, and describes several realizations in 1D and 2D
lattices. Then Sec. III explains how to compute expected
values of local observables and two-point correlators. Cen-
tral to this discussion is the past causal cone of a small block
of lattice sites and the ascending and descending superopera-
tors, which can be used to move local observables and den-
sity matrices up and down the causal cone.

Section IV considers how to optimize a single tensor of
the MERA during an energy minimization. This optimization
involves linearizing a quadratic cost function for the �isomet-
ric� tensor, and computing its environment. In Sec. V we
describe algorithms to minimize the energy of the state or
subspace represented by a MERA. A highlight of the algo-
rithms is their computational cost. For an inhomogeneous
lattice with N sites, the cost scales as O�N�, whereas for
translation-invariant systems it drops to just O�log N�. Other
variations in the algorithm allow us to address infinite sys-
tems, and scale-invariant systems �e.g., quantum critical sys-
tems�, at a cost independent of N.

Section VI presents benchmark calculations for different
1D quantum lattice models, namely, Ising, three-level Potts,
XX, and Heisenberg models. We compute ground-state ener-
gies, magnetizations, and two-point correlators throughout
the phase diagram, which includes a second-order quantum
phase transition. We find that at the critical point of an infi-
nite system, the error in the ground-state energy decays ex-
ponentially with the refinement parameter �, whereas the
two-point correlators remain accurate even at distances of
millions of lattice sites. We then extract critical exponents
from the order parameter and from two-point correlators. Fi-
nally, we also compute a MERA that includes the first ex-
cited state, from which the energy gap can be obtained and
seen to vanish as 1 /N at criticality.

This paper replaces similar notes on MERA algorithms
presented in Ref. 18. For the sake of concreteness, we have
not included several of the algorithms of Ref. 18, which
nevertheless remain valid proposals. We have also focused
the discussion on a ternary MERA for 1D lattices �instead of
the binary MERA used in all previous references� because it
is somewhat computationally advantageous �e.g., see compu-
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tation of two-point correlators� and also leads to a much
more convenient generalization in two dimensions.

II. MERA

Let L denote a D-dimensional lattice made of N sites,
where each site is described by a Hilbert space V of finite
dimension d, so that VL�V�N. The MERA is an ansatz used
to describe certain pure states ����VL of the lattice or, more
generally, subspaces VU�VL.

There are two useful ways of thinking about the MERA
that can be used to motivate its specific structure as a tensor
network, and also help understand its properties and how the
algorithms ultimately work. One way is to regard the MERA
as a quantum circuit C whose output wires correspond to the
sites of the lattice L.5 Alternatively, we can think of the
MERA as defining a coarse-graining transformation that
maps L into a sequence of increasingly coarser lattices, thus
leading to a renormalization-group transformation.1 Next we
briefly review these two complementary interpretations.
Then we compare several MERA schemes and discuss how
to exploit space symmetries.

A. Quantum circuit

As a quantum circuit C, the MERA for a pure state ���
�VL is made of N quantum wires, each one described by a
Hilbert space V, and unitary gates u that transform the unen-
tangled state �0��N into ��� �see Fig. 1�.

In a generic case, each unitary gate u in the circuit C
involves some small number p of wires,

u: V�p → V�p, u†u = uu† = I , �1�

where I is the identity operator in V�p. For some gates, how-
ever, one or several of the input wires are in a fixed state �0�.
In this case we can replace the unitary gate u with an iso-
metric gate w

w: Vin → Vout, w†w = IVin
, �2�

where Vin�V�pin is the space of the pin input wires that are
not in a fixed state �0� and Vout�V�pout is the space of the
pout= p output wires. We refer to w as a �pin , pout� gate or
tensor.

Figure 2 shows an example of a MERA for a 1D lattice L
made of N=16 sites. Its tensors are of types �1,2� and �2,2�.
We call the �1,2� tensors isometries w and the �2,2� tensors
disentanglers u for reasons that will be explained shortly, and
refer to Fig. 2 as a binary 1D MERA, since it becomes a
binary tree when we remove the disentanglers. Most of the
previous work for 1D lattices1,5–7,16–18 has been done using
the binary 1D MERA. However, there are many other pos-

FIG. 1. �Color online� Quantum circuit C corresponding to a
specific realization of the MERA, namely, the binary 1D MERA of
Fig. 2. In this particular example, circuit C is made of gates involv-
ing two incoming wires and two outgoing wires, p= pin= pout=2.
Some of the unitary gates in this circuit have one incoming wire in
the fixed state �0� and can be replaced with an isometry w of type
�1,2�. By making this replacement, we obtain the isometric circuit
of Fig. 2. FIG. 2. �Color online� �Top� Example of a binary 1D MERA for

a lattice L with N=16 sites. It contains two types of isometric
tensors, organized in T=4 layers. The input �output� wires of a
tensor are those that enter it from the top �leave it from the bottom�.
The top tensor is of type �1,2� and the rank �T of its upper index
determines the dimension of the subspace VU�VL represented by
the MERA. The isometries w are of type �1,2� and are used to
replace each block of two sites with a single effective site. Finally,
the disentanglers u are of type �2,2� and are used to disentangle the
blocks of sites before coarse-graining. �Bottom� Under the
renormalization-group transformation induced by the binary 1D
MERA, three-site operators are mapped into three-site operators.
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sible choices. In this paper, for instance, we will mostly use
the ternary 1D MERA of Fig. 3, where the isometries w are
of type �1,3� and the disentanglers u remain of type �2,2�.
Figure 4 makes more explicit the meaning of Eq. �2� for
these tensors. Notice that describing tensors and their ma-
nipulations by means of diagrams is fully equivalent to using
equations and often much more clear.

Equation �2� encapsulates a distinctive property of the
MERA as a tensor network: each of its tensors is isometric
�notice that Eq. �1� is a particular case of Eq. �2��. A second
key feature of the MERA refers to its causal structure. We
define the past causal cone of an outgoing wire of circuit C
as the set of wires and gates that can affect the state on that
wire. A quantum circuit C leads to a MERA only when the
causal cone of an outgoing wire involves just a constant �that
is, independent of N� number of wires at any fixed past time
�Fig. 5�. We refer to this property by saying that the causal
cone has a bounded “width.”

The usefulness of the quantum circuit interpretation of the
MERA will become clear in Sec. III, in the context of com-
puting expected values for local observables. There, the two
defining properties, namely, Eq. �2� and the peculiar structure
of the causal cones of C, will be the key to making such
calculations efficient.

B. Renormalization-group transformation

Let us now review how the MERA defines a coarse-
graining transformation for lattice systems that leads to a
real-space renormalization-group scheme, known as en-
tanglement renormalization.1 We start by grouping the ten-
sors in the MERA into T� log N different layers, where each
layer contains a row of isometries w and a row of disentan-
glers u. We label these layers with an integer �=1,2 , . . . ,T,
with �=1 for the lowest layer and with increasing values of �
as we climb up the tensor network, and denote by U� the
isometric transformation implemented by all tensors in layer
�; see Figs. 2 and 3. Notice that the incoming wires of each
U� define the Hilbert space of a lattice L� with a number of
sites N� that decreases exponentially with � �specifically, as
N2−� and N3−� for the binary and ternary 1D MERAs�. That
is, the MERA implicitly defines a sequence of lattices

L0 → L1 → ¯ → LT, �3�

where L0	L is the original lattice, and where we can think
of lattice L� as the result of coarse-graining lattice L�−1.

Specifically, as illustrated in Figs. 2 and 3, this coarse-
graining transformation is implemented by the operator U�

†

that maps pure states of the lattice L�−1 into pure states of the
lattice L�,

FIG. 3. �Color online� �Top� Example of ternary 1D MERA
�rank �T, T=3� for a lattice of 18 sites. It differs from the binary 1D
MERA of Fig. 2 in that the isometries are of type �1,3�, so that
blocks of three sites are replaced with one effective site. �Bottom�
As a result, two-site operators are mapped into two-site operators
during the coarse graining.

FIG. 4. �Color online� The tensors which comprise a MERA are
constrained to be isometric; cf. Eq. �2�. The constraints for the
isometries w and disentanglers u of the ternary MERA can be
equivalently expressed �i� diagrammatically or �ii� with equations.
In this paper we will mostly use the diagrammatic notation, which
remains simple for complicated tensor networks.

FIG. 5. �Color online� The past causal cone of a group of sites in
L0	L is the subset of wires and gates that can affect the state of
those sites. The example shows the causal cone of a pair of nearest-
neighbor sites of L0 for the ternary 1D MERA. Notice that for each
lattice L�, �=0,1 ,2 ,3 ,4, the causal cone involves at most two sites.
This can be seen to be the case for any pair of contiguous sites of
L0. We refer to this property by saying that the causal cones of the
MERA have bounded width.
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U�
†: VL�−1

→ VL�
, �4�

and that proceeds in two steps �Fig. 6�. Let us partition the
lattice L�−1 into blocks of neighboring sites. The first step
consists of applying the disentanglers u on the boundaries of
the blocks, aiming to reduce the amount of short-range en-
tanglement in the system. Once �part of� the short-range en-
tanglement between neighboring blocks has been removed,
the isometries w are used in the second step to map each
block of sites of lattice L�−1 into a single effective site of
lattice L�.

By composition, we obtain a sequence of increasingly
coarse-grained states,

��0� → ��1� → ¯ → ��T� , �5�

for the lattices 
L0 ,L1 , . . . ,LT�, where ����	U�
†���−1� and

��0�	��� is the original state. Overall the MERA corre-
sponds to the transformation U	U1U2¯UT,

U: VLT
→ VL0

, �6�

with ��0�=U��T�.
Regarding the MERA from the perspective of the renor-

malization group is quite instructive. It tells us that this an-
satz is likely to describe states with a specific structure of
internal correlations, namely, states in which the entangle-
ment is organized in different length scales. Let us briefly
explain what we mean by this.

We say that the state ��� contains entanglement at a given
length scale � if by applying a unitary operation �i.e., a dis-
entangler� on a region R of linear size �, we are able to
decouple �i.e., disentangle� some of the local degrees of free-
dom, that is, if we are able to convert the state ��� into a
product state ���� � �0�, where �0� is the state of the local
degrees of freedom that have been decoupled and ���� is the
state of the rest of the system. �Here we assumed, of course,
that the decoupling is not possible with a unitary operation
that acts on a subregion R� of the region R, where the size ��
of R� is smaller than the size of R, ����.�

What makes the MERA useful is that the entanglement in
most ground states of local Hamiltonians seems to decom-
pose into moderate contributions corresponding to different
length scales. We can identify two behaviors, depending on
whether the system is in a phase characterized by symmetry-
breaking order or by topological order �see Ref. 19 and ref-
erences therein�. In systems with symmetry-breaking order,
ground-state entanglement spans all length scales � smaller
than the correlation length � in the system—and, conse-
quently, at a quantum critical point, where the correlation
length � diverges, entanglement is present at all length
scales.1 In a system with topological order, instead, the
ground state displays some form of �topological� entangle-
ment affecting all length scales even when the correlation
length vanishes.12,13

C. Choose your MERA

We have presented the MERA as a tensor network origi-
nating in a quantum circuit. Its tensors have incoming and
outgoing wires or indices according to a well-defined direc-
tion of time in the circuit. Therefore, a MERA can be re-
garded as a tensor network equipped with a �fictitious� time
direction and with two properties:

�a� Its tensors are isometric �Eq. �2��.
�b� Past causal cones have bounded width �Fig. 5�.
From a computational perspective, these are the only

properties that we need to retain. In particular, there is no
need to keep the vector space dimension of the quantum
wires �equivalently, of the sites in the coarse-grained lattice�
constant throughout the tensor network. Accordingly, we will
consider a MERA where the vector space dimension of a site
of lattice L�, denoted ��, may depend on the layer �. �This
dimension could also be different for each individual site of
layer �, but for simplicity we will not consider this case
here.� Notice that �0=d corresponds to the sites of the origi-
nal lattice L.

Bond dimension. Often, however, the sites in most layers
will have the same vector space dimension �except, for in-
stance, the sites of the original lattice L, with �0=d, or the
single site of the top lattice LT, with dimension �T�. In this
case we denote the dominant dimension simply by �, and we
refer to the MERA as having bond dimension �. The com-
putational cost of the algorithms described in subsequent
sections is often expressed as a power of the bond dimension
�.

Rank. We refer to the dimension �T of the space VLT
�corresponding to the single site of the uppermost lattice LT�

FIG. 6. �Color online� Detailed description of the real-space
renormalization-group transformation for 1D lattices induced by �i�
the binary 1D MERA and �ii� the ternary 1D MERA.
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as the rank of the MERA. For �T=1, the MERA represents a
pure state ����VL. More generally, a rank-�T MERA en-
codes a �T-dimensional subspace VU�VL. For instance,
given a Hamiltonian H on the lattice L, we could use a
rank-�T MERA to describe the ground subspace of H �as-
suming it had dimension �T�, or the ground state of H �if it
was not degenerate� and its �T−1 excitations with lowest
energy. The isometric transformation U in Eq. �6� can be
used to build a projector P	UU†,

P: VL → VL, P2 = P, tr�P� = �T, �7�

onto the subspace VU�VL.
Given the above definition of the MERA, many different

realizations are possible depending on what kind of isometric
tensors are used and how they are interconnected. We have
already met two examples for a 1D lattice, based on a binary
and ternary underlying tree. Figure 7 shows two schemes for
a 2D square lattice. It is natural to ask, given a lattice geom-
etry, what realization of the MERA is the most convenient
from a computational point of view. A definitive answer to
this question does not seem simple. An important factor,
however, is given by the fixed-point size of the support of
local observables under successive RG transformations—
which corresponds to the width of the past causal cones.

Support of local observables. In each MERA scheme, un-
der successive coarse-graining transformations a local opera-
tor eventually becomes supported in a characteristic number
of sites. This is the result of two competing effects: disentan-
glers u tend to extend the support of the local observable �by
adding new sites at its boundary�, whereas the isometries w
tend to reduce it �by transforming blocks of sites into single
sites�. For instance, in the binary 1D MERA, local observ-
ables end up supported in three contiguous sites �Fig. 2�,
whereas in the ternary 1D MERA local observables become
supported in two contiguous sites �Fig. 3�.

Therefore, an important difference between the binary and
ternary 1D schemes is in the natural support of local observ-
ables. This can be seen to imply that the cost of a computa-
tion scales as a larger power of the bond dimension � for the
binary scheme than for the ternary scheme, namely, as O��9�
compared to O��8�. However, it turns out that the binary
scheme is more effective at removing entanglement, and as a
result a smaller � is already sufficient in order to achieve the
same degree of accuracy in the computation of, say, a
ground-state energy. In the end, we find that for the 1D sys-
tems analyzed in Sec. VI, the two effects compensate and the
costs required in both schemes in order to achieve the same
accuracy are comparable. On the other hand, in the ternary
1D MERA, two-point correlators between selected sites can
be computed at a cost O��8�, whereas analogous calculations
in the binary 1D MERA are much more expensive. Therefore
in any context where the calculation of two-point correlators
is important, the ternary 1D MERA is a better choice.

The number of possible realizations of the MERA for 2D
lattices is greater than for 1D lattices. For a square lattice, the
two schemes of Fig. 7 are obvious generalizations of the
above ones for 1D lattices. The first scheme, proposed in
Ref. 6 �see also Ref. 8�, involves isometries of type �1,4� and
the natural support of local observables is a block of 3	3

sites. The second scheme involves isometries of type �1,9�
and local observables end up supported in blocks of 2	2
sites. Here, the much narrower causal cones of the second
scheme leads to a much better scaling of the computational

FIG. 7. �Color online� Detailed description of the real-space
renormalization-group transformation for a 2D square lattice in-
duced by two possible realizations of the MERA, generalizing the
1D schemes of Fig. 6. In the first case the isometries map a block of
2	2 sites into a single site, which can be seen to imply that the
natural size of a local operator, equivalently the causal width of the
scheme, is 3	3 sites. In the second case the isometries map a block
of 3	3 sites into a single site and the natural size of a local opera-
tor is 2	2. As a result, the computational cost in the second
scheme is much smaller than in the first scheme.
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cost with �, only O��16� compared to O��28� for the first
scheme.

Another remark in relation to possible realizations con-
cerns the type of tensors we use. So far we have insisted in
distinguishing between disentanglers u �unitary tensors of
type p→p� and isometries w �isometric tensors of type
1→p��. We will continue to use this terminology throughout
this paper, but we emphasize that a more general form of
isometric tensor, e.g., of type �2,4�, which both disentangles
the system and coarse-grained sites, is possible and is actu-
ally used in some realizations.9

D. Exploiting symmetries

Symmetries have a direct impact on the efficiency of
computations, because they can be used to drastically reduce
the number of parameters in the MERA. Important examples
are given by space symmetries, such as translation and scale
invariance; see Fig. 8.

The MERA is made of O�N� disentanglers and isometries.
In order to describe an inhomogeneous state ����VL or
subspace VU�VL, all these tensors are chosen to be differ-
ent. Therefore, for fixed � the number of parameters in the
MERA scales linearly in N.

However, in the presence of translation invariance, one
can use a translation-invariant MERA, where we choose all
the disentanglers u and isometries w of any given layer � to
be the same, thus reducing the number of parameters to
O�log N� �if there are T� log N layers�. We emphasize that a
translation-invariant MERA, as just defined, does not neces-

sarily represent a translation-invariant state ����VL or sub-
space VU�VL. The reason is that different sites of L are
placed in inequivalent positions with respect to the MERA.
As a result, often the MERA can only approximately repro-
duce translation-invariant states or subspaces, although the
departure from translation invariance is seen to typically de-
crease fast with increasing �. In order to further mitigate
inhomogeneities, we often consider an average of local ob-
servables or reduced density matrices over all possible sites,
as will be discussed in Sec. III.

In systems that are invariant under changes in scale, we
will use a scale-invariant MERA, where all the disentanglers
and isometries can be chosen to be the same and we only
need to store a constant number of parameters. The scale-
invariant MERA is useful in representing the ground state of
some quantum critical systems1 and the ground subspace of
systems with topological order at the infrared limit of the RG
flow.12,13

A reduction in parameters �as a function of �� is also
possible in the presence of internal symmetries, such as U�1�
�e.g., particle conservation� or SU�2� �e.g., spin isotropy�. We
defer their analysis to Ref. 21.

For the sake of concreteness, the explanations in the rest
of this paper refer to the ternary 1D scheme of Fig. 3. How-
ever, analogous considerations also apply to any other real-
ization of the MERA.

III. COMPUTATION OF EXPECTED VALUES OF LOCAL
OBSERVABLES AND CORRELATORS

Let o�r,r+1� denote a local observable defined on two con-
tiguous sites �r ,r+1� of L. In this section we explain how to
compute the expected value

�o�r,r+1��VU
	 tr�o�r,r+1�P� . �8�

Here P is a projector �see Eq. �7�� onto the �T-dimensional
subspace VU�VL represented by the MERA. For a rank
�T=1 MERA, representing a pure state ����VL, the above
expression reduces to

�o�r,r+1��� 	 ���o�r,r+1���� . �9�

Evaluating Eq. �8� is necessary in order to extract physically
relevant information from the MERA, such as, e.g., the en-
ergy and magnetization in a spin system. In addition, the
manipulations involved are also required as a central part of
the optimization algorithms described in Secs. IV and V. The
results of this section remain relevant even in cases where no
optimization algorithm is required �for instance, when an ex-
act expression of the MERA is known12,13�.

As explained below, the expected value of Eq. �8� can be
computed in a number of ways:

�a� By repeated use of the ascending superoperator A, the
local operator o�r,r+1� is mapped onto a coarse-grained opera-
tor oT on lattice LT. Equation �8� can then be evaluated as the
trace of the coarse-grained operator oT, tr�o�r,r+1�P�=tr�oT�.

�b� Alternatively, by repeated use of the descending super-
operator D, a two-site reduced density matrix 
�r,r+1� for lat-
tice L is obtained. Equation �8� can then evaluated as
tr�o�r,r+1�P�=tr�o�r,r+1�
�r,r+1��.

FIG. 8. �Color online� Ternary 1D MERA in the presence of
space symmetries. �i� In order to represent an inhomogeneous state
or subspace, all disentanglers u and isometries w are different �de-
noted by different colors�. Notice that there are N /3 disentanglers
�isometries� in the first layer, N /9 in the second, and more generally
N /3� in layer �, so that the total number of tensors is
2N
�=1

log N1 /3��2N. Therefore the total number of parameters re-
quired to specify the MERA is proportional to the size N of the
lattice L. �ii� In order to represent a state or subspace that is invari-
ant under translations, we choose all disentanglers and isometries
on a given layer of the MERA to be the same. In this case the
MERA is completely specified by O�log N� disentanglers and isom-
etries. �iii� In a scale-invariant MERA, the same disentangler and
isometry is in addition used in all layers.
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�c� More generally, the ascending and descending super-
operators A and D can be used to compute an operator

o�
�r�,r�+1� and density matrix 
�

�r�,r�+1� for the coarse-grained
lattice L�. Equation �8� can then be evaluated as

tr�o�r,r+1�P�=tr�o�
�r�,r�+1�
�

�r�,r�+1��.
First we introduce the ascending and descending superop-

erators A and D and explain in detail how to perform the
computation of the expected value of Eq. �8�. Then we ad-
dress also the computation of the expected value

�O�VU
	 tr�OP�, O 	 


r

o�r,r+1�, �10�

where O is an operator that decomposes as a sum of local
operators in L, as well as the computation of two-point cor-
relators. Finally, we revisit these tasks in the presence of
translation invariance and scale invariance.

The ascending and descending superoperators are an es-
sential part of the MERA formalism that was introduced in
Ref. 5 �see, e.g., Fig. 4 of Ref. 5 for an explicit representa-
tion of the descending superoperator D�. These superopera-
tors have been also called MERA quantum channel or
MERA transfer matrix in Ref. 10.

A. Ascending and descending superoperators

In Sec. II we have seen that the MERA defines a sequence
of increasingly coarser lattices 
L0 ,L1 , . . . ,LT�. Under the
coarse-graining transformation U�

† of Eq. �4�, a local operator
o�−1

�r,r+1�, supported on two consecutive sites �r ,r+1� of lattice

L�−1, is mapped onto another local operator o�
�r�,r�+1� sup-

ported on two consecutive sites �r� ,r�+1� of lattice L� �Fig.
3�. This is so because in U�

†o�−1
�r,r+1�U� most disentanglers and

isometries of U� and U�
† are annihilated in pairs according to

Eq. �2�. The resulting transformation is implemented by
means of the ascending superoperator A described in Fig. 9,

o�
�r�,r�+1� = A�o�−1

�r,r+1�� . �11�

In order to keep our notation simple, we do not specify on
which lattice or sites the superoperator A is applied, even
though A actually depends on �, r, and r�. Instead, when
necessary we will simply indicate which of its three structur-
ally different forms �namely, left AL, center AC, or right AR
in Fig. 9� is being used.

As above, let �r ,r+1� denote two consecutive sites of
lattice L�−1 and let �r� ,r�+1� denote two consecutive sites of
lattice L� that lay inside the past causal cone of �r ,r+1�
�L�−1. Given a density matrix 
�

�r�,r�+1� in L�, the descend-
ing superoperator D of Fig. 10 produces a density matrix

�−1

�r,r+1� in L�−1,


�−1
�r,r+1� = D�
�

�r�,r�+1�� . �12�

Notice that the descending superoperator D �which depends
on �, r, and r�� is the dual of the ascending superoperator A,
D=A�. Indeed, as can be checked in Fig. 11, by construction

we have for any o�−1
�r,r+1� and 
�

�r�,r�+1�,

tr�o�−1
�r,r+1�D�
�

�r�,r�+1��� = tr�A�o�−1
�r,r+1��
�

�r�,r�+1�� . �13�

Correspondingly, there are also three structurally different
forms of the descending superoperators, namely, left DL,
center DC, and right DR in Fig. 10.

B. Evaluation of a two-site operator

We can now proceed to compute the expected value
tr�o�r,r+1�P� of Eq. �8� from the MERA. This computation
corresponds to contracting the tensor network depicted in the
upper half of Fig. 12.

In a key first step, the contraction of the tensor network
for tr�o�r,r+1�P� is significantly simplified by the fact that, by
virtue of Eq. �2�, each isometric tensor outside the past
causal cone of sites �r ,r+1��L is annihilated by its Hermit-
ian conjugate. As a result, we are left with a new tensor

FIG. 9. �Color online� The ascending superoperator A trans-
forms a local operator o�−1 of lattice L�−1 into a local operator o� of
lattice L� �for simplicity we omit the label �r ,r+1� that specifies the
sites on which o�−1 and o� are supported�. Depending on the relative
position between the support of o�−1 and the closest disentangler,
the operator can be lifted to lattice L� in three different ways, indi-
cated in the figure as �a�–�c�. Correspondingly, there are three struc-
turally different forms of the ascending superoperator A, namely,
left AL, center AC, and right AR, indicated as �a��– �c��. Notice that
the figure completely specifies the tensor network representation of
the superoperator, which is written in terms of the relevant disen-
tanglers and isometries �and their Hermitian conjugates�. An ex-
plicit form for the average ascending superoperator A of Eq. �34�
is obtained by averaging the above three tensor networks.
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network that contains only �two copies of� the tensors in the
causal cone, as represented in the second half of Fig. 12.
Because the past causal cones in the MERA have a bounded
width, this tensor network can now be contracted with a
computational effort that grows with N just as O�log N�. One
can proceed in several ways.

Bottom-top. In the bottom-top approach, we would start
by contracting the indices of o�r,r+1� and the disentanglers and
isometries of the first layer ��=1� of the causal cone; then we
would contract the indices of disentanglers and isometries of
the second layer ��=2�; and so on �Fig. 13�. However, this
corresponds to repeatedly applying the ascending superop-
erator A on o0

�r,r+1�	o�r,r+1�. Therefore this is precisely how
we proceed, obtaining a sequence of increasingly coarse-
grained operators

FIG. 10. �Color online� The descending superoperator D trans-
forms a local density matrix 
� of lattice L� into a local density
matrix 
�−1 of lattice L�−1. Depending on the relative position be-
tween the support of 
�−1 and the closest disentangler, the density
matrix 
� can be lowered to lattice L�−1 in three different ways,
indicated in the figure as �a�–�c�. Correspondingly, there are three
structurally different forms of the descending superoperator D,
namely, left DL, center DC, and right DR, indicated as �a��– �c��. An
explicit form for the average descending superoperator D of Eq.
�40� is obtained by averaging the above three tensor networks.

FIG. 11. �Color online� The ascending and descending superop-
erators, A and D, are dual to each other; see Eq. �13�. This becomes
evident by inspecting the above figure, where the superoperators are
explicitly decomposed in terms of disentanglers and isometries.

FIG. 12. �Color online� �i� Tensor network corresponding to the
expected value tr�o�r,r+1�P� of Eq. �8�. The two-site operator o�r,r+1�

is represented by a four-legged rectangle in the middle of the tensor
network. The shaded region represents the past causal cone of sites
r ,r+1�L. �ii� All isometric tensors that lay outside the past causal
cone of sites r ,r+1�L annihilate and we are left with a simpler
tensor network.

FIG. 13. �Color online� �i� The top tensor transforms a two-site
operator oT−1 defined on lattice LT−1 into a one-site operator �a
�T	�T matrix� oT on the top of the MERA. �ii� The two-site den-
sity matrix 
T−1 on lattice LT−1 is obtained through contraction of
the top tensor with its conjugate. Notice that 
T−1, as well as all 
�,
are normalized to have trace tr�
��=�T.
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o0
�r,r+1�→

A
o1

�r1,r1+1�→
A

o2
�r2,r2+1�→

A
¯ oT �14�

supported on lattices L0 ,L1 ,L2 , . . . ,LT, respectively. Here,
the �T	�T matrix oT at the top of the MERA is obtained
according to Fig. 14 and the expected value of Eq. �8� cor-
responds to its trace,

tr�o�r,r+1�P� = tr�oT� . �15�

Top-bottom. In the top-bottom approach, we would in-
stead start by contracting the indices of the tensors in the top
layer ��=T� of the causal cone; then we would contract the
indices of the tensors in the layer right below ��=T−1�; and
so on �Fig. 15�. However, that corresponds to first computing
a density matrix 
T−1 for the two sites of LT−1 according to
Fig. 14 and then repeatedly applying the descending super-
operator D. Therefore this is how we proceed, producing a
sequence of two-site density matrices


T−1→
D

¯ 
2
�r2,r2+1�→

D

1

�r1,r1+1�→
D


0
�r,r+1� �16�

supported on lattices LT−1 , . . . ,L2 ,L1 ,L0, respectively.22 The
last density matrix, 
�r,r+1�	
0

�r,r+1�, describes the state of the
two sites of L on which the local operator o�r,r+1� is sup-
ported. Therefore we can evaluate the expected value of
o�r,r+1�,

tr�o�r,r+1�P� = tr�o�r,r+1�
�r,r+1�� . �17�

Middle ground. More generally, one can also evaluate the
expected value of Eq. �8� through a mixed strategy where the
ascending and descending superoperators are used to com-
pute the operator o�

�r�,r�+1� and density matrix 
�
�r�,r�+1� sup-

ported on lattice L�, which fulfill

tr�o�r,r+1�P� = tr�o�
�r�,r�+1�
�

�r�,r�+1�� . �18�

In all the cases above, one needs to use the ascending/
descending superoperators about T� log N times, at a cost
O��8�, so that the total computational cost is O��8 log N�.

C. Evaluation of a sum of two-site operators

In order to compute the expected value

�O�VU
	 tr�OP�, O 	 


r

o�r,r+1� �19�

of an operator O on L that decomposes as the sum of two-
site operators, we can write

tr�OP� = 

r

tr�o�r,r+1�P� �20�

and individually evaluate each contribution tr�o�r,r+1�P� by
using, e.g., the bottom-top strategy of Sec. III B, with a cost
O��8N log N�. However, by properly organizing the calcula-
tion, the cost of computing tr�OP� can be reduced to O��8N�.
We next describe how this is achieved. The strategy is

FIG. 14. �Color online� The contraction of the tensor network in
the lower half of Fig. 12 using the bottom-top approach corresponds
to employing the ascending super operator A a number of times. In
this particular case, we first use �i� AR, then �ii� AC, and then �iii�
AL, to bring the tensor network into a simple form whose contrac-
tion gives a complex number: the expected value of Eq. �8�.

FIG. 15. �Color online� The contraction of the tensor network in
the lower half of Fig. 12 using the top-bottom approach corresponds
to first implementing �i� a top tensor contraction followed by re-
peated application of the descending super operator D. Specifically,
here we first use �ii� DL, then �iii� DC, and then �iv� DR, in order to
compute the appropriate density matrix 
�r,r+1� for two sites �r ,r
+1��L. With the density matrix 
�r,r+1� we can finally compute �v�
the expectation value tr�o�r,r+1�P�=tr�o�r,r+1�
�r,r+1��.
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closely related to the computation of expected values in the
presence of translation invariance, as discussed later in this
section. Again, there are several possible approaches.

Bottom-top. We consider the sequence of operators

O0→
U1

†

O1→
U2

†

O2→
U3

†

¯ OT, O0 	 O , �21�

where the operator O� is the sum of N /3� local operators,

O� = 

r=1

N/3�

o�
�r,r+1�. �22�

O�−1 is obtained from O�−1 by coarse graining, O�

=U�
†O�−1U�. Each local operator o�

�r,r+1� in O� is the sum of
three local operators from O�−1 �see �i�–�iii� of Fig. 9�, which
are lifted to L� by the three different forms of the ascending
superoperator, AL, AC, and AR. Since O�−1 has N /3�−1 local
operators, O� is obtained from O�−1 by using the ascending
superoperator A only N /3�−1 times. Then, since 
�=0

T 3−��2,
this means that the entire sequence of Eq. �21� requires using
A only O�N� times. Once OT is obtained, the expected value
of O follows from

tr�OP� = tr�OT� . �23�

Top-bottom. Here we consider instead the sequence of en-
sembles of density matrices

ET−1 →
UT−1

¯ E2→
U2

E1→
U1

E0, �24�

where E� is an ensemble of the N /3� two-site density matri-
ces 
�

�r,r+1� supported on nearest-neighbor sites of L�,

E� 	 

�
�1,2�,
�

�2,3�, . . . ,
�
�N/3�,1�� . �25�

From each density matrix in the ensemble E� we can gener-
ate three density matrices in the ensemble E�−1 by applying
the three different forms of the descending superoperator,
DL, DC, and DR �see �i�–�iii� of Fig. 10�. All the N /3�−1

density matrices of ensemble E�−1 can be obtained from den-
sity matrices of E� in this way. Since 
�=0

T 3−��2, we see that
by using the descending superoperator D only O�N� times,
we are able to compute all the density matrices in the se-
quence of ensembles of Eq. �24�. Once the ensemble E0
	E has been obtained,

E = 

�1,2�,
�2,3�, . . . ,
�N,1�� , �26�

the expected value of O follows from

tr�OP� = 

r

tr�o�r,r+1�
�r,r+1�� . �27�

Middle ground.—More generally, we could build operator
O� as well as ensemble E� and evaluate the expected value of
O from the equality

tr�OP� = 

r

tr�o�
�r,r+1�
�

�r,r+1�� . �28�

Each of the strategies above require the use of the ascending/
descending superoperators O�N� times and therefore can in-
deed be accomplished with cost O��8N�.

D. Evaluation of two-point correlators

Let us now consider the computation of a two-point cor-
relator of the form

C2�r1,r2� 	 ���o�r1�
� o�r2���� , �29�

where o�r� and o�s� denote two one-site operators applied on
two arbitrary sites r and s of L; see Fig. 16. Figure 17 shows
the tensor network to be contracted. Again, we can use Eq.
�2� to remove all disentanglers and isometries that lay out-
side the joint past causal cone for sites r and s. Then, we can
proceed to contract the resulting tensor network, for instance,
through a bottom-top or top-bottom approach, with the help
of the ascending and descending superoperators �and gener-
alizations thereof�. Notice that since at intermediate layers
the two legs of the causal cone may contain two sites each
one, in general we will need to compute operators or density
matrices that span more than just two sites, and the cost of
their computation will be larger than O��8�.

However, for specific choices of sites r ,s�L, we are still
able to compute C2�r ,s� with overall cost O��8 log N�, as
illustrated in Fig. 18. We emphasize that this was not pos-
sible in the binary 1D MERA and is one of the main reasons
to work with the ternary 1D MERA. For such choices of
sites r and s, each of the two legs of the joint past causal
cone contains just one site until, at some layer �0, they fuse
into a single two-site leg. We can introduce one-site ascend-
ing and descending superoperators A�1� and D�1� �Fig. 19�, in
terms of which we can express, for ���0, the transformation
of a product operator o�−1

�r�
� o�−1

�s� into a product operator

o�
�r��

� o�
�s�� = A�1��o�−1

�r� � � A�1��o�−1
�s� � , �30�

or of a density matrix 
�
�r�,s�� into a density matrix


�−1
�r,s� = �D�1�

� D�1���
�
�r�,s��� , �31�

where r ,s�L�−1 and r� ,s��L� are sites corresponding to
single-site legs of the causal cone. In, say, the bottom-top
approach we can compute the correlator of Eq. �29� by using
the single-site ascending superoperator A�1� for layers �

FIG. 16. �Color online� In order to compute a two-point cor-
relator C2�r1 ,r2�, we need to consider the union of the past causal
cones of sites r1 and r2. Notice that, in contrast with the case of a
single local operator, the joint causal cone of two distant sites typi-
cally involves more than two contiguous sites of some lattice L�.
This makes the computational cost scale as a power of � larger than
�8.
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��0 and then the two-site ascending superoperator A for
layer ���0.

E. Translation invariance

The computation of the expected value tr�o�r,r+1�P� of a
single local operator o�r,r+1� in the case of a translation-
invariant MERA can proceed as explained earlier in this sec-
tion. In the present case one would expect the result to be
independent of the sites �r ,r+1��L on which the operator
is supported, but a finite bond dimension � typically intro-
duces small space inhomogeneities in the reduced density
matrix 
�r,r+1� and therefore also in tr�o�r,r+1�P�
=tr�o�r,r+1�
�r,r+1��.

Given a two-site operator o, an expected value that is
independent of �r ,r+1� can be obtained by computing an
average over sites,

tr�o�r,r+1�P� →
1

N



r

tr�o�r,r+1�P� �32�

=
1

N



r

tr�o�r,r+1�
�r,r+1�� , �33�

where the terms o�r,r+1� denote translations of the same op-
erator o. This average can be computed, e.g., by obtaining
the N density matrices 
�r,r+1� individually and then adding
them together, with an overall cost O��8N�. However, with a
better organization of the calculation the cost can be reduced
to O��8 log N�.

We first need to introduce average versions of the ascend-
ing and descending superoperators. Given a two-site operator

FIG. 17. �Color online� �i� Tensor network to be contracted in
order to evaluate a two-point correlator C2�r1 ,r2�. Similar to the
case of a local observable in Fig. 3, the tensors outside of the casual
cone annihilate in pairs due to their isometric character �Eq. �2��.
�ii� The resulting tensor network is much simpler network. How-
ever, for a generic pair of sites r1 ,r2�L, the joint past causal cone
will contain more than just two sites per layer, resulting in a com-
putational cost that scales with � as a power larger than �8.

FIG. 18. �Color online� Two-point correlators for specific pairs
of sites r ,s �at distances of 3q sites for q=1,2 ,3 , . . .� can be com-
puted with cost O��8 log N�. This is due to the fact that the causal
cones for each of r ,s contains only one site until they meet—�i� at
L1, �ii� at L2, or �iii� at L3.

FIG. 19. �Color online� A one-site operator o�−1 supported on
certain sites of L�−1 �corresponding to the central wire of an isom-
etry w�� is mapped onto a single-site operator on L�. In this case the
�i� ascending and �ii� descending superoperators A�1� and D�1� have
a very simple form.
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o�−1 in lattice L�−1, we can build a two-site operator o� by
using an average of the three two-site operators resulting
from lifting o�−1 to lattice L�, namely, AL�o�−1�, AL�o�−1�,
and AL�o�−1�. In terms of the average ascending superopera-
tor A,

A 	 1
3 �AL + AC + AR� , �34�

this transformation reads

o� = A�o�−1� . �35�

Importantly, if we coarse grain the translation-invariant op-
erator

1

N�−1



r

o�−1
�r,r+1�, Nx 	 N/3x, �36�

where N�−1 is the number of sites of L�−1 and the terms
o�−1

�r,r+1� denote translations of o�−1, the resulting operator can
be written as

1

N�



r

o�
�r,r+1�, �37�

where the terms o�−1
�r,r+1� denote translations of o� and where

o� and o�−1 are related through Eq. �35�. In other words, the
average ascending superoperator A can also be used to char-
acterize the coarse graining, in the translation-invariant case,
of operators of the form of Eq. �19�.

Let 
̄� denote the two-site density matrix obtained by av-
eraging over all density matrices 
�

�r,r+1� on different pairs
�r ,r+1� of two contiguous sites of L�,


̄� 	
1

N�



r


�
�r,r+1�, �38�

and similarly for lattice L�−1,


̄�−1 	
1

N�−1



r


�−1
�r,r+1�. �39�

Recall that each density matrix 
�
�r,r+1� on lattice L� gives rise

to three density matrices in L�−1 according to the three ver-
sions of the descending superoperator, namely, DL, DC, and
DR. It follows that the density matrix 
̄�−1 can be obtained
from the density matrix 
̄� by using the average descending
superoperator,

D 	 1
3 �DL + DC + DR� , �40�

that is,


̄�−1 = A�
̄�� . �41�

We can now proceed to compute the average expected
value of Eqs. �32� and �33�. This can be accomplished in
several alternative ways.

Bottom-top. Given a two-site operator o, we compute a
sequence of increasingly coarse-grained operators

o0→
A

o1→
A

o2→
A

¯ oT, o0 	 o , �42�

where o� is obtained from o�−1 by means of the average
ascending superoperator A. Then we simply have

1

N



r

tr�o�r,r+1�P� = tr�oT� . �43�

Top-bottom. Alternatively, we can compute the sequence
of average density matrices


̄T−1→
D

¯ 
̄2→
D


̄1→
D


̄0, �44�

where 
̄�−1 is obtained from 
̄� by means of the average
descending superoperator D and where 
̄	 
̄0 corresponds to
the average density matrix on lattice L,


̄ 	
1

N



r


�r,r+1�, �45�

in terms of which we can express the average expected value
as

1

N



r

tr�o�r,r+1�P� = tr�o
̄� . �46�

Middle ground. As customary, we can also use both A and
D to compute o� and 
̄�, and evaluate the average expected
value as

1

N



r

tr�o�r,r+1�P� = tr�o�
̄�� . �47�

In all the above strategies the average ascending and de-
scending superoperators A and D are used O(log�N�) times
and therefore the computational cost scales as O��8 log N�.

To summarize, with a translation-invariant MERA we can
coarse grain a single two-site operator o �with a transforma-
tion that involves averaging over all possible causal cones�
or compute the average density matrix 
̄ by using the aver-
age ascending or descending superoperators. This leads to a
sequence of operators o� and density matrices 
̄�,

o0→
A

o1→
A

¯ →
A

oT, o0 	 o , �48�


̄0←
D


̄1←
D

¯ ←
D


̄T, 
̄0 	 
̄ , �49�

from which the expected value of o is obtained as tr�o
̄�, as
tr�oT� or, more generally, as tr�o�
̄��.

F. Scale invariance

In the case of a translation-invariant MERA that is also
scale invariant, the average ascending superoperator A is
identical on each layer �, since it is always made of the same
disentangler u and isometry w. We then refer to it as the
scaling superoperator S.11 Its dual S� corresponds to the
descending superoperator D.

As derived in Ref. 10, the expected value of a local ob-
servable o in the thermodynamic limit can be obtained by
analyzing the spectral decomposition of the scaling superop-
erator S,

S�•� = 




�
�
 tr��̂
•�, tr��̂
��� = �
�. �50�

We refer to the eigenoperators �
 of S,
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S��
� = �
�
, �51�

as the scaling operators. Notice that the operators �̂
, which
are biorthonormal to the operators �
, are eigenoperators of
S�,

S���̂
� = �
�̂
. �52�

We recall that the scaling operator S is made of isometric
tensors �cf. Eq. �2�� and therefore the identity operator I is an
eigenoperator of S with eigenvalue 1 �that is, S is unital�,

S�I� = I . �53�

On the other hand, since the MERA is built as a quantum
circuit—and descending through the causal cone corresponds
to advancing in the time of a quantum evolution—it is obvi-
ous that the descending superoperator D is a quantum chan-
nel, and so are D and S� �see also Ref. 10�. In particular, S�

is a contractive superoperator,23 which means that the eigen-
values �
 in Eq. �50� are constrained to fulfill ��
��1. In
practical simulations11 one finds that the identity operator I is
the only eigenoperator of S with eigenvalue of 1, �I=1, and
that ��
��1 for 
� I. Let 
̂ denote the corresponding unique
fixed point of S�,

S��
̂� = 
̂ . �54�

In an infinite system, the local density matrix of any lattice
L� �with finite �� results from applying S� on 
T an infinite
number of times, and it is therefore equal to the fixed point

̂.10 Consequently, Eqs. �48� and �49� are then replaced with

o0→
S

o1→
S

o2→
S

o3 ¯ , o0 	 o , �55�


̂←
S�


̂←
S�


̂←
S�


̂ ¯ , �56�

where in addition, by decomposing o in terms of the scaling
operators �
,

o = 




c
�
, c
 	 tr��̂
o� , �57�

we can explicitly compute o�:

o� = �S � ¯ � S
� times

��o� = �
�

c��������.

�58�

This expression shows that unless cI�0, the operator o� de-
creases exponentially with � �recall that ��
��1 for 
� I�
and its expected value must vanish. The average expected
value of o then reads

lim
N→�

1

N

r

tr�o�r,r+1�P� = tr�o
̂� . �59�

Two-point correlators for selected positions can also be
expressed in a simple way, by considering the one-site scal-
ing superoperator S�1�, which is how we refer to the super-
operator A�1� in Fig. 19 in the case of a scale-invariant
MERA. Its spectral decomposition,

S�1��•� = 




�
�
 tr��̂
•�, tr��̂
��� = �
�, �60�

provides us with a new set of �one-site� scaling operators �
.
Given two arbitrary one-site operators o and o�, we can al-
ways decompose them in terms of these �
 �similarly as in
Eq. �57��. Thus we can focus directly on a correlator of the
form ��


�r���
�s��. Here r and s are restricted to selected posi-

tions as in Fig. 18. Then we have

��

�r���

�s�� =
C
�

�r − s��
+��
, �61�

where �
	 log3 �
 is the scaling dimension of the scaling
operator �
, whereas C
� is given by

C
� 	 tr���
 � ���
̂� , �62�

with 
̂ from Eq. �54�.
In deriving Eq. �61� we have used that, by construction,

�r−s�=3q for some q=1,2 ,3 , . . .. Coarse graining �

�r���

�s� a
number q of times produces a multiplicative factor ��
���q

and the residual two-site operator �

�0���

�1�, whose expected
value gives C
�. On the other hand, by noting that �q

=�log3�r−s�= �r−s�log3 �= �r−s�log3 �, we arrive at ��
���q= �r
−s��
+��, which explains the denominator in Eq. �61�.

We note that the polynomial decay of correlators in the
scale-invariant MERA was established in Ref. 5. Their con-
nection with the eigenvalues of the scaling superoperator
�Eq. �50�� was formalized in Ref. 10. Its closed expression in
Eq. �61�, including the coefficients C
�, was derived in Ref.
11, where also three-point correlators were considered. �Ref-
erence 11 also unveiled a connection between the scale-
invariant MERA and conformal field theory. The coefficients
C
� of two-point correlators and the analogous for three-
point correlators are the key to identifying the operator alge-
bra of primary fields and their towers of descendant fields.�

In conclusion, from the scale-invariant MERA we can
characterize the expected value of local observables and two-
point correlators, as expressed in Eqs. �59�, �61�, and �62�.
All critical exponents of the theory can be extracted from the
scaling dimensions �
. The required manipulations include
computing 
̄ from S �using sparse diagonalization tech-
niques� and diagonalizing S�1�, all of which can be accom-
plished with the ternary 1D MERA with cost O��8�.

IV. OPTIMIZATION OF A DISENTANGLER OR ISOMETRY

In preparation for the algorithms to be described in Sec.
V, here we explain how to optimize a single tensor of the
MERA. Let H be a Hamiltonian made of nearest-neighbor
two-site interactions h�r,r+1�,

H = 

r

h�r,r+1�. �63�

For purposes of the optimization below, we choose each term
h�r,r+1� so that it has no positive eigenvalues, h�r,r+1��0.
�This can be achieved with the simple replacement h�r,r+1�

→h�r,r+1�−�maxI, where �max is the largest eigenvalue of
h�r,r+1�.�
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Our goal for the time being will be to minimize the energy
�Fig. 20�i��,

E 	 tr�HP� , �64�

where P is a projector onto the �T-dimensional subspace
VU�VL �see Eq. �7�� by modifying only one of the tensors
of the MERA. The optimization of a disentangler u is very
similar to that of an isometry w, and we can focus on de-
scribing the latter in more detail.

Suppose then that given a MERA, we want to optimize an
isometry w while keeping the rest of the tensors fixed. The
cost function E is quadratic in w �more specifically, it de-
pends bilinearly on w and w†�,

E�w� = tr�

s

wMsw
†Ns� + c1, �65�

where Ms and Ns are two sets of matrices and c1 is a constant
�that originates in all the Hamiltonian terms of Eq. �63� out-
side the future causal cone of w�. Unfortunately there is no
known algorithm to solve a quadratic problem subject to the
additional isometric constraint of Eq. �2�. One can, however,
attempt several approximate strategies �see Ref. 18 for some
possibilities�. Here we describe an iterative approach based
on linearizing the cost function E�w�.

In this approach, we temporarily regard w and w† as in-
dependent tensors, and optimize w while keeping w† fixed.
The cost function reads, up to the irrelevant constant, simply

E��w� 	 tr�w�w�, �w 	 

s

Msw
†Ns, �66�

where we call the matrix �w the environment of the isometry
w and we treat it as if it was independent of w. E��w� is then
minimized by the choice w=−WV†, where V and W are the
unitary transformations in the singular value decomposition
of the environment, �w=VSW†,

min
w

E��w� = min
w

�wVSW†� = − tr�S� = − 




s
 �67�

�here s
�0 are the singular values of �w�.
Accordingly, given an initial isometry w, the optimization

is performed by iterating the following four steps qone times:
L1. Compute the environment �w with the newest version

of w† �as explained below; see also Fig. 21�.
L2. Compute the singular value decomposition �w

=VSW†.
L3. Compute the new isometry w�=−WV†.
L4. Replace w† with w�†.
The environment �w of an isometry w �at layer �� can

be decomposed as the sum of six contributions �w
i

�i=1, . . . ,6�, each one expressed as a tensor network that
involves neighboring isometric tensors of the same layer �
�disentanglers and isometries� as well as one Hamiltonian

FIG. 20. �Color online� �i� The energy of a MERA, defined as
E	 tr�HP�, is represented explicitly in terms of a tensor network.
The removal of an isometry w from this network gives �ii� the
environment �w for w �and similarly for disentanglers u�. By con-
struction we have that E=tr�w�w�.

FIG. 21. �Color online� Tensor network corresponding to the 6
different contributions �w

i to the environment �w=
i=1
6 �w

i of the
isometry w. Notice that at each iteration of L1–L4 we need to
recompute each �w

i since it depends on the updated w†. Neverthe-
less, the Hamiltonian term and density matrix that appears in �u

remain the same throughout the optimization and only need to be
computed once.

G. EVENBLY AND G. VIDAL PHYSICAL REVIEW B 79, 144108 �2009�

144108-14



term h�−1
�r,r+1� and one density matrix 
�

�r�,r�+1�; see Fig. 21. The
two-site Hamiltonian term h�−1

�r,r+1� collects contributions from
all the Hamiltonian terms in Eq. �63� included in the future
causal cone of the sites r ,r+1 of L�−1 and is computed with
the help of the ascending superoperator A. Similarly, the

two-site density matrix 
�
�r�,r�+1� is computed with the help of

the descending superoperator D. The computation of h�−1
�r,r+1�

and 
�
�r�,r�+1�, which only needs to be performed once during

the optimization of w, has a cost O��8 log N�.
On the other hand, once we have h�−1

�r,r+1� and 
�
�r�,r�+1�,

computing �� has a cost O��8� and needs to be repeated at
each iteration of steps L1–L4, with a total cost O��8qone�. In
actual MERA simulations we find that the cost function Ew
typically drops very close to the eventual minimum already
after a small number of iterations qone on the order of 10.

The optimization of a disentangler u is achieved analo-
gously, but in this case the environment �u decomposes into
three contributions �u

i �i=1,2 ,3�; see Fig. 22. The required
Hamiltonian terms and density matrices can be computed at
a cost O��8 log N�, while the optimization of u following
steps L1–L4 has a cost O��8qone�.

V. OPTIMIZATION OF THE MERA

In this section we explain a simple algorithm to optimize
the MERA so that it minimizes the energy of a local Hamil-
tonian of form �63�. We first describe the algorithm for a
generic system, and then discuss a number of specialized
variations. These are directed to exploit translation invari-
ance and scale invariance and to simulate systems where
there is a finite range of correlations.

A. Algorithm

The basic idea of the algorithm is to attempt to minimize
the cost function of Eq. �64� by sequentially optimizing in-
dividual tensors of the MERA, where each tensor is opti-
mized as explained in Sec. IV.

By choosing to sweep the MERA in an organized way, we
are able to update all its O�N� tensors once with cost O��8N�.
Here we describe a bottom-top approach where the MERA is
updated layer by layer, starting with the bottom layer �=1
and progressing upward all the way to the top layer �top-
bottom and combined approaches are also possible�.

Given a starting MERA and the Hamiltonian of Eq. �63�,
a bottom-top sweep is organized as follows:

A1. Compute all two-site density matrices 
�
�r,r+1� for all

layers � and sites r�L�. Starting from the lowest layer and
for growing values of �=1,2 , . . . ,T−1, repeat the following
two steps.

A2. Update all disentanglers u and isometries w of layer �.
A3. Compute all two-site Hamiltonian terms h�

�r,r+1� for
layer �.

Then, finally,
A4. Update the top tensor of the MERA.
In step A1, we compute all nearest-neighbor reduced den-

sity matrices 
�
�r,r+1� for all the lattices L�, so that they can be

used in step A2. We first compute the density matrix for the
two sites of LT−1 as explained in Fig. 14. Then we use the
descending superoperator D to compute the six possible
nearest-neighbor two-site density matrices of LT−2. More
generally, given all the relevant density matrices of L�, we
use D to obtain all the relevant density matrices of L�−1. In
this way, the number of operations is proportional to the
number of computed density matrices, namely, O�N�, and the
total cost is O��8N�.

Step A2 breaks into a sequence of single-tensor optimiza-
tions that sweeps a given layer � of the MERA. Each indi-
vidual optimization in that layer is performed as explained in
Sec. IV. Note that in order to optimize, say, an isometry w,
we build its environment �w by using �i� the density matrices
computed in step A1; �ii� the Hamiltonian terms that were
either given at the start for �=1 or have been computed in A3
for ��1; and �iii� the neighboring disentanglers and isome-
tries within the layer �. We can proceed, for instance, by
updating all disentanglers of the layer from left to right, and
then update all the isometries. This can be repeated a number
qlay of times until the cost function does not change signifi-
cantly.

In step A3, the new disentanglers and isometries of layer
� are used to build the ascending superoperator A, which we
then apply to the Hamiltonian terms of layer �−1 to compute
the Hamiltonian terms for layer �. As explained after Eq.
�22�, each Hamiltonian term in layer � is built from three
contributions from layer �−1. In step A4, the optimized top
tensor corresponds to the �T eigenvectors with smaller en-
ergy eigenvalues of the Hamiltonian of the two-site lattice
LT−1, obtained by exact diagonalization.

The overall optimization of the MERA consists of iterat-
ing steps A1–A4 until some pre-established degree of con-
vergence in the energy E is achieved. Suppose this occurs
after qiter iterations. Then the cost of the optimization scales

FIG. 22. �Color online� Tensor networks corresponding to the
three different contributions �u

i to the environment �u=
i=1
3 �u

i of
the disentangler u. Notice that at each iteration of L1–L4 we need to
recompute each �u

i since it depends on the updated u†. Neverthe-
less, the Hamiltonian term and density matrix that appears in �u

remain the same throughout the optimization and only need to be
computed once.
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as O��8Nqoneqlayqiter�. We observe that it is often convenient
to keep qone and qlay relatively small �say, between 1 and 5�,
since it is not worth spending much effort optimizing a single
tensor or layer that will have to be optimized again later on
with a modified cost function.

B. Translation-invariant systems

When the Hamiltonian H is invariant under translations,
we can use a translation-invariant MERA.20 In this case,
each layer � is characterized by a disentangler u� and an
isometry w�. In addition, on each lattice L� we have one
two-site Hamiltonian h� and one average density matrix 
̄�.
Then a bottom-top sweep of the MERA breaks into steps
A1–A4 for the inhomogeneous case above, but with the fol-
lowing simplifications.

In step A1, we compute 
̄�−1 from 
̄� using the average
descending superoperator D of Eq. �40�,


̄� → 
̄�−1 = D�
̄�� . �68�

Then the whole sequence 

̄T−1 , . . . , 
̄1 , 
̄0�, with T� log N,
is computed with cost O��8 log N�.

In step A2, the minimization of the energy E by optimiz-
ing, say, the isometry w� is no longer a quadratic problem
�since a larger power of w� appears now in the cost function�.
Nevertheless, we still linearize the cost function E and opti-
mize w� according to steps L1–L4 of Sec. IV. Namely, we
build the environment �w �which now contains copies of w�

and w�
†, all of them treated as frozen�, compute its singular

value decomposition to build the optimal w��, and then re-
place w� and w�

† with w�� and w��
† in the tensor network for

�w before starting the next iteration.
In step A3, the new Hamiltonian term h� is obtained from

h�−1 using the average ascending superoperator A,

h�−1 → h� = A�h�−1� . �69�

Step A4 proceeds as in the inhomogeneous case. The
overall cost of optimizing the MERA is in this case
O(�8 log�N�qoneqlayqiter).

C. Scale-invariant systems

Given the Hamiltonian H for an infinite lattice at a quan-
tum critical point, where we expect the system to be invari-
ant under rescaling, we can use a scale-invariant MERA to
represent its ground state.1,5–7,10,11 �A scale-invariant MERA
is also relevant in the context of topological order in the
infrared limit of the RG flow,12,13 both for finite and infinite
systems. We will not consider such systems here.�

Let us assume that all disentanglers and isometries are
copies of a unique pair �u ,w�. Then, as explained in Ref. 11,
the optimization algorithm can be specialized to take advan-
tage of scale invariance as follows.

In step A1, we apply sparse diagonalization techniques to
compute the fixed-point density matrix 
̂ from the superop-
erator S�. This amount to applying S� a number of times and
therefore can be accomplished with cost O��8�.

In step A2, the environment for, e.g., the isometry w, �w,
is computed as a weighted sum of environments for different

layers �=1,2 , . . .. In a translation-invariant MERA the envi-
ronment for layer � is a function f�u� ,w� ,
� ,h�−1� of the pair
�u� ,w��, the density matrix 
�, and the Hamiltonian term h�−1
�specifically, f is the sum of the diagrams in Fig. 21�. A
scale-invariant MERA corresponds to the replacements

�u�,w�� → �u,w�, 
� → 
̂ , �70�

so that only h�−1 retains dependence on �. We then choose
the average environment

�w 	 

�=1

�
1

3� f�u,w, 
̂,h�−1� , �71�

where the weight 1 /3� reflects the fact that for each isometry
at layer � there are three isometries at layer �−1. Using
linearity of the f in its fourth argument we arrive at

�w = f�u,w, 
̂, h̄�, h̄ 	 

�=1

�
1

3�h�−1. �72�

In practice, only a few terms of the expansion of h̄ �say, �
=1,2 ,3 ,4� seem to be necessary. Given �w, the optimization
proceeds as usual with a singular value decomposition.

Steps A3 and A4 are not necessary. That is, the algorithm
used to minimize the expected value of H consists simply in
iterating the following two steps:

ScInv1. Given a pair �u ,w�, compute a pair �
̂ , h̄�.
ScInv2. Given the pairs �u ,w� and �
̂ , h̄�, update the pair

�u ,w�.
In practical simulations it is convenient to include a few

�say, one or two� transitional layers at the bottom of the
MERA, each one characterized by a different pair �u� ,w��. In
this way the bond dimension � of the MERA can be made
independent of the dimension d of the sites of L. These
transitional layers are optimized using the algorithm for
translation-invariant systems.

D. Finite range of correlations

A third variation in the basic algorithm consists of setting
the number T� of layers in the MERA to a value smaller than
its usual one, T� log3 N �in such a way that the number NT�
of sites on the top lattice LT� may still be quite large� and to
consider a state ��� of the lattice L such that after T� coarse-
graining transformations it has become a product state,

��0� → ��1� → ¯ → ��T�� , �73�

where ��T��= �0��NT�. For instance, Fig. 23 shows a MERA
for N=36 and T�=2. The four top tensors of this MERA are
of type �0,3�, where the lack of upper index indicates that the
top lattice LT� is in a product state of its NT�=4 sites.

We refer to this ansatz as the finite-range MERA, since it
is such that correlations in ��� are restricted to a finite range
�, roughly ��3T sites, in the sense that regions separated by
more than � sites display no correlations. This is due to the
fact that the past causal cones of distance regions of L have
zero intersection, see Fig. 23.

Given a ground state ��� with a finite correlation length �,
the finite-range MERA with ��� turns out to be a better
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option to represent ��� than the standard MERA with T
� log3 N layers, in that it offers a more compact description
and the cost of the simulations is also lower since there are
less tensors to be optimized. The algorithm is adapted in a
straightforward way. The only significant difference is that
the top isometries, being of type �0,3�, do not require any
density matrix in their optimization �their environment is
only a function of neighboring disentanglers and isometries,
and of Hamiltonian terms�.

A clear advantage of the finite-range MERA is in a
translation-invariant system, where the cost of a simulation
with range �=3T� is O��8 log3 ��, that is, independent of N.
This allows us to take the limit of an infinite system. We find
that given a translation-invariant Hamiltonian H
=
r=1

N h�r,r+1�, where h�r,r+1� is the same for all r�L, the op-
timization of a finite-range MERA will lead to the same col-
lection of optimal disentanglers and isometries

�u1 ,w1� , �u2 ,w2� , . . . , �uT� ,wT���, for different lattice sizes
N ,N� ,N� , . . . larger than �. This is due to the existence of
disconnected causal cones, which imply that the cost func-
tions for the optimization are not sensitive to the total system
size provided it is larger than �. As a result,

�u1 ,w1� , �u2 ,w2� , . . . , �uT� ,wT��� can be used to define not
just one but a whole collection of states
���N�� , ���N��� , ���N��� , . . ., for lattices of different sizes
N ,N� ,N� , . . ., such that they all have the same two-site den-
sity matrix 
 and therefore also the same expected value of
the energy per link,

���N��h���N�� = ���N���h���N��� = ¯ . �74�

In particular, we can use the finite-range MERA algorithm to
obtain an upper bond for the ground-state energy of an infi-
nite system, even though only T� pairs �u� ,w�� are optimized.

VI. BENCHMARK CALCULATIONS FOR 1D
SYSTEMS

In order to benchmark the algorithms of Sec. V, we have
analyzed zero-temperature, low-energy properties of a num-
ber of 1D quantum spin systems. Specifically, we have con-
sidered the Ising model,24 the three-state Potts model,25 the
XX model,26 and the Heisenberg models,27 with Hamilto-
nians

HIsing = 

r

���z
�r� + �x

�r��x
�r+1�� , �75�

HPotts = 

r
��Mz

�r� + 

a=1,2

Mx,a
�r� Mx,3−a

�r+1� � , �76�

HXX = 

r

��x
�r��x

�r+1� + �y
�r��y

�r+1�� , �77�

HHeisenberg = 

r

��x
�r��x

�r+1� + �y
�r��y

�r+1� + �z
�r��z

�r+1�� , �78�

where �x, �y, and �z are the spin-1/2 Pauli matrices and
Mx,1, Mx,2, and Mz are the matrices

FIG. 24. �Color online� �Top� The energy error of the MERA
approximations to the ground state of the infinite Ising model, as
compared against exact analytic values, is plotted both for different
transverse magnetic field strengths and different values of the
MERA refinement parameter �. The finite-correlation-range algo-
rithm �with at most T=5 levels� was used for noncritical ground
states, while the scale-invariant MERA was used for simulations at
the critical point. It is seen that representing the ground state is most
computationally demanding at the critical point, although even at
criticality the MERA approximates the ground state to between five
digits of accuracy ��=4� and ten digits of accuracy ��=22�. �Bot-
tom� Scale-invariant MERA are used to compute the ground states
of infinite, critical, 1D spin chains of Eqs. �75�–�78� for several
values of �. In all instances one observes a roughly exponential
convergence in energy over a wide range of values for � as indi-
cated by trend lines �dashed line�. Energy errors for Ising, XX, and
Heisenberg models are taken relative to the analytic values for
ground energy, while energy errors presented for the Potts model
are taken relative to the energy of a �=22 simulation.

FIG. 23. �Color online� A finite-correlation-range MERA with
T�=2 layers is used to represent a state of N=36 sites. Since it lacks
the uppermost layers, only sites within a finite distance or range �

�3T� of each other may be correlated. More precisely, only pairs of
sites �r1 ,r2� whose past casual cones intersect can be correlated, as
it is the case with the pair of sites �6,14� but not with �14,26�, for
which we have �o�14�o�26��= �o�14���o�26��.
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Mz 	 �2 0 0

0 − 1 0

0 0 − 1
� , �79�

Mx,1 	 �0 1 0

0 0 1

1 0 0
�, Mx,2 	 �0 0 1

1 0 0

0 1 0
� . �80�

We assume periodic boundary conditions in all instances and
use a translation-invariant MERA to represent an approxima-
tion to the ground state and, in some models, also the first
excited state. For Ising and Potts models the parameter � is
the strength of the transverse magnetic field applied along
the z axis, with �c=1 corresponding to a quantum phase
transition. Both the XX model and Heisenberg model are
quantum critical as written.

Figure 24 shows the accuracy obtained for ground-state
energies of the above models in the limit of an infinite chain,
as a function of the refinement parameter �. Simulations
were performed with either the finite-correlation-range algo-
rithm �for the noncritical Ising� or the scale-invariant algo-
rithm �for critical systems�. In all cases one observes roughly
exponential convergence to the exact energy with increasing
�. For any fixed value of �, the MERA consistently yields
more accuracy for some models than for others. For the Ising

model, the cheapest simulation considered ��=4� produced
five digits of accuracy, while the most computationally ex-
pensive simulation ��=22� produced ten digits of accuracy.28

The time taken for the MERA to converge, running on a 3
GHz dual-core desktop PC with 8 Gbyte of random access
memory �RAM�, is approximately a few minutes, hours,
days, or weeks for �=4, 8, 16, or 22, respectively. We stress
that these simulations were performed on single desktop
computers. A parallel implementation of the code running on
a computer cluster might bring significantly larger values of
� within computational reach.

Figure 25 demonstrates the ability of the MERA to repro-
duce finite-size effects. It shows the transverse magnetization
as a function of the transverse magnetic field for several
system sizes. The results smoothly interpolate between those
for small system sizes and those for an infinite chain, and
match the available exact solutions. On the other hand, the
MERA can also be used to explore the phase diagram of a
system. Figure 26 shows the spontaneous magnetization,
which is the system’s order parameter, for a 1D chain of N
=162 sites for both Ising and Potts models, where N has been
chosen large enough that the results under consideration do
not change significantly with the system size �thermody-
namic limit�. A fit for the critical exponent of the Ising model
gives �MERA=0.1243, while the fit for the Potts model pro-

FIG. 25. �Color online� The transverse magnetization ��z� for
Ising and 1

2 �Mz� for Potts, is plotted for translation-invariant chains
of several sizes N. �Top� For the Ising model, the magnetization
given from �=8 MERA matches those from exact diagonalization
for small system sizes �N=6,18�, while the magnetization from the
N=54 MERA approximates that from the thermodynamic limit
�known analytically�. �Bottom� Equivalent magnetizations for the
Potts model, here computed with a �=12 MERA. Simulations with
larger N systems show little change from the N=54 data, again
indicating that N=54 is already close to the thermodynamic limit.

FIG. 26. �Color online� �Top� Spontaneous magnetization ��x�
computed with a �=8 MERA for a periodic Ising system of N
=162 sites. The results closely approximate the analytic values of
magnetization known for the thermodynamic limit. A fit of the data
near the critical point yields a critical exponent �MERA=0.1243,
with the exact exponent known as �ex=1 /8. �Bottom� An equiva-
lent phase portrait of the Potts model, here with spontaneous mag-
netization 1

2 �Mx,1+Mx,2�, is computed with a �=14 MERA and is
plotted with a fit of the data near the critical point. The fit yields a
critical exponent �MERA=0.105 with the exact exponent known to
be �ex=1 /9.
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duces �MERA=0.105. These values are within less than 1%
and 6% of the exact exponents �=1 /8 and �=1 /9 for the
Ising and Potts models, respectively. Obtaining an accurate
value for this critical exponent through a fit of the data near
the critical point is difficult due to the steepness of the curve
near the critical point. Through an alternative method involv-
ing the scaling superoperator S �Sec. III�, more accurate
critical exponents were obtained in Ref. 11.

The previous results refer to local observables. Let us now
consider correlators. A scale-invariant MERA, useful for the
representation of critical systems, gives polynomial correla-
tors at all length scales, as shown in Fig. 27 for the critical
Ising and Potts models. Note that Fig. 27 displays the corr-
elators that are most convenient to compute �as per Fig. 18�.
These occur at distances d=3q for q=1,2 ,3 , . . . and are
evaluated with cost O��8�. Evaluation of arbitrary correlators
is possible �see Fig. 16� but its cost is several orders of �
more expensive. The precision with which correlators are
obtained is remarkable. A �=22 MERA for the Ising model
gives ��x

�r��x
�r+d�� correlators, at distances up to d=109 sites,

accurate to within 0.6% of exact correlators. Critical expo-
nents � are obtained through a fit of the form C�r ,r+d�

�d−�, with C as correlators of x, y, or z magnetization. For
the Ising model, the exponents for x, y, and z magnetizations
are obtained with less than 0.02% error each. For the Potts
model exponents are obtained with less than 0.04% and
0.08% errors for x and z magnetizations, respectively.

Finally, we also demonstrate the ability of MERA to in-
vestigate low-energy excited states by computing the energy
gap in the Ising and Potts models. Figure 28 shows that the
gap grows linearly with the magnetic field � and independent
of N in the disordered phase ���c, while at criticality it
closes as 1 /N. Even a relatively cheap �=8 MERA repro-
duces the known critical energy gaps to within 0.2% for
systems as large as N=162 sites. The expected value of ar-
bitrary local Hamiltonians �besides the energy� can also be
easily evaluated for the excited state.

VII. CONCLUSIONS

After reviewing the conceptual foundations of the MERA
�Refs. 1 and 5� �Secs. II and III�, in this paper we have
provided a rather self-contained description of an algorithm
to explore low-energy properties of lattice models �Secs. IV
and V�, and benchmark calculations addressing 1D quantum
spin chains �Sec. VI�.

FIG. 27. �Color online� Two-point correlators for infinite 1D
Ising and Potts chains at criticality ��=1�, as computed with �
=22 scale-invariant MERA. Correlators for the Ising model are
compared against analytic solutions �Ref. 24�, while those for the
Potts model are plotted against the polynomial decay predicted
from CFT �Ref. 29�. A scale-invariant MERA produces polynomial
decay of correlators at all length scales. A fit of the form
��x

�r��x
�r+d���d−�x

for Ising correlators generated by the MERA
gives the decay exponent �x=0.249 96, close to the known analytic
value of 1/4 and similarly for the fits on other correlators. Indeed
the MERA here reproduces exact ��x

�r��x
�r+d�� correlators for the

Ising model at a distance up to d=109 sites within 0.6% accuracy.
Critical exponents for the Potts are also reproduced very accurately.

FIG. 28. �Color online� �Top� A �=8 MERA is used to compute
the energy gap �E �the energy difference between the ground and
first excited states� of the Ising chains as a function of the transverse
magnetic field. The gap computed with MERA for N=6,18 sites is
in good agreement with that computed through exact diagonaliza-
tion of the system. Inset: Crosses show analytic values of energy
gaps at the critical point for N= 
6,18,54,162�. Even for the largest
system considered, N=162, the gap computed with MERA,
�EMERA=9.67	10−3, compares well with the exact value �Eex

=9.69	10−3. �Bottom� Equivalent data for the Potts model where
simulations have been performed with a �=14 MERA to account
for the increased computational difficulty of this model.
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Many of the features of the MERA algorithm highlighted
by the present results can also be observed by investigating
systems of free fermions6 and free bosons7 in D=1,2 dimen-
sions. These include �i� the ability to consider arbitrarily
large systems, �ii� the ability to compute the low-energy sub-
space of a Hamiltonian, �iii� the ability to disentangle non-
critical systems completely, �iv� the ability to find a scale-
invariant representation of critical systems, and finally �v�
the reproduction of accurate polynomial correlators for criti-
cal systems. However, the algorithms of Refs. 6 and 7 exploit
the formalism of Gaussian states that is characteristic of free
fermions and bosons and cannot be easily generalized to in-
teracting systems. Instead, the algorithms discussed in this
paper can be used to address arbitrary lattice models with
local Hamiltonians.

An alternative method to optimize the MERA is with a
time-evolution algorithm as described in Ref. 17. The time-
evolution algorithm has a clear advantage: it can be used
both to compute the ground state of a local Hamiltonian �by
simulating an evolution in imaginary time� and to study lat-
tice dynamics �by simulating an evolution in real time�. We
find, however, that the algorithms described in the present
paper are a better choice when it comes to computing ground
states. On the one hand, the time-evolution algorithm has a

time step �t that needs to be sequentially reduced in order to
diminish the error in the Suzuki-Trotter decomposition of the
�Euclidean� time-evolution operator. In the present algo-
rithm, convergence is faster and there is no need to fine tune
a time step �t. In addition, the present algorithm allows one
to compute not only the ground state but also low-energy
excited states. It is unclear how to use the time-evolution
algorithm to achieve the same.

The benchmark calculations presented in this paper refer
to 1D systems. For such systems, however, DMRG �Ref. 3�
already offers an extraordinarily successful approach. The
strength of entanglement renormalization and the MERA re-
lies on the fact that the present algorithms can also address
large 2D lattices, as discussed in Refs. 8 and 9.
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