117 research outputs found

    The plasticity size effect in replicated microcellular aluminium

    Get PDF
    Microcellular aluminium can be produced by replication in porous material with pores across a wide range of sizes but with otherwise identical structures. Compressive tests reveal a plasticity size effect, with samples showing higher strengths and higher rates of work hardening for smaller pore diameters. This size effect is shown to be dislocational, its main origin being dislocation emission during the composite stage of foam processing. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved

    Continuous Casting of Multi-Alloy Metal Products and Related Methods

    Get PDF
    Described are multi-alloy metal products formed by a continuous casting system, as well as methods of continuously casting multi-alloy metal products. The disclosed multi-alloy metal product includes a plurality of layers of metallurgically bonded together metal alloys. The layers can be distributed along the thickness of the metal product or along the width of the metal product. The disclosed continuous casting system includes a plurality of injectors configured to simultaneously inject a plurality of metal alloys into a casting cavity to form the multi-alloy metal product

    Djerba

    Get PDF
    SituĂ©e Ă  l’extrĂ©mitĂ© sud-est du Golfe de GabĂšs, la Petite Syrte des Anciens, Djerba est la plus grande – avec 538 km2 de superficie – et surtout la plus cĂ©lĂšbre des Ăźles du littoral d’Afrique du Nord. Elle n’est sĂ©parĂ©e du continent que par deux Ă©troits passages – celui entre Adjim et Djorf Ă  l’ouest et celui d’El Kantara Ă  l’est -qui encadrent la mer de Bou Grara*. Une zone de hauts-fonds qui l’enveloppe entiĂšrement, une marĂ©e dont l’amplitude est ici de 1,30 m en pĂ©riode de vives eaux, rend..

    Djerba

    Get PDF
    SituĂ©e Ă  l’extrĂ©mitĂ© sud-est du Golfe de GabĂšs, la Petite Syrte des Anciens, Djerba est la plus grande – avec 538 km2 de superficie – et surtout la plus cĂ©lĂšbre des Ăźles du littoral d’Afrique du Nord. Elle n’est sĂ©parĂ©e du continent que par deux Ă©troits passages – celui entre Adjim et Djorf Ă  l’ouest et celui d’El Kantara Ă  l’est -qui encadrent la mer de Bou Grara*. Une zone de hauts-fonds qui l’enveloppe entiĂšrement, une marĂ©e dont l’amplitude est ici de 1,30 m en pĂ©riode de vives eaux, rend..

    Interferometric imaging of carbon monoxide in comet C/1995 O1 (Hale-Bopp): evidence for a strong rotating jet

    Full text link
    Observations of the CO J(1-0) 115 GHz and J(2-1) 230 GHz lines in comet C/1995 O1 (Hale-Bopp) were performed with the IRAM Plateau de Bure interferometer on 11 March, 1997. The observations were conducted in both single-dish (ON-OFF) and interferometric modes with 0.13 km s-1 spectral resolution. Images of CO emission with 1.7 to 3" angular resolution were obtained. The ON-OFF and interferometric spectra show a velocity shift with sinusoidal time variations related to the Hale-Bopp nucleus rotation of 11.35 h. The peak position of the CO images moves perpendicularly to the spin axis direction in the plane of the sky. This suggests the presence of a CO jet, which is active night and day at about the same extent, and is spiralling with nucleus rotation. The high quality of the data allows us to constrain the characteristics of this CO jet. We have developed a 3-D model to interpret the temporal evolution of CO spectra and maps. The CO coma is represented as the combination of an isotropic distribution and a spiralling gas jet, both of nucleus origin. Spectra and visibilities (the direct output of interferometric data) analysis shows that the CO jet comprises ~40% the total CO production and is located at a latitude ~20 degrees North on the nucleus surface. Our inability to reproduce all observational characteristics shows that the real structure of the CO coma is more complex than assumed, especially in the first thousand kilometres from the nucleus. The presence of another moving CO structure, faint but compact and possibly created by an outburst, is identified.Comment: 20 pages, 26 figures. Accepted for publication in Astronomy & Astrophysic

    Detection of Cold Atomic Clouds in the Magellanic Bridge

    Get PDF
    We report a detection of cold atomic hydrogen in the Magellanic Bridge using 21-cm absorption spectroscopy toward the radio source B0312-770. With a column density of N_HI=1.2E20 cm^-2, a maximum absorption optical depth of tau=0.10 and a maximum 21-cm emission brightness temperature of 1.4 K, this line of sight yields a spin temperature, T_s, between 20 K and 40 K. H I 21-cm absorption and emission spectroscopy toward 7 other low column density sightlines on the periphery of the LMC and SMC reveal absorption toward one additional background radio source behind the SMC with tau=0.03. The data have typical sensitivities of sigma_tau=0.005 to 0.070 in absorption and sigma_{T_B}=0.03 K in emission. These data demonstrate the presence of a cold atomic phase which is probably accompanied by molecular condensations in the tenuous interstellar medium of the Bridge region. Young OB stars observed in the Magellanic Bridge could form "in situ" from these cold condensations rather than migrate from regions of active star formation in the main body of the SMC. The existence of cold condensations and star formation in the Magellanic Bridge might be understood as a small scale version of the mechanism that produces star formation in the tidal tails of interacting galaxies.Comment: 25 pages, uses AASTeX and psfig; Accepted for Publication in the Astronomical Journa

    Interferometric imaging of the sulfur-bearing molecules H2S, SO and CS in comet C/1995 O1 (Hale-Bopp)

    Full text link
    We present observations of rotational lines of H2S, SO and CS performed in comet C/1995 O1 (Hale-Bopp) in March 1997 with the Plateau de Bure interferometer (IRAM). The observations provide informations on the spatial and velocity distributions of these molecules. They can be used to constrain their photodissociation rate and their origin. We use a radiative transfer code which allows us to compute synthetic line profiles and interferometric maps, to be compared to the observations. Both single-dish spectra and interferometric spectral maps show a day/night asymmetry in the outgassing. From the analysis of the spectral maps, including the astrometry, we show that SO and CS present in addition a jet-like structure that may be the gaseous counterpart of the dust high-latitude jet observed in optical images. A CS rotating jet is also observed. Using the astrometry provided by continuum radio maps obtained in parallel, we conclude that there is no need to invoke of nongravitational forces acting on this comet, and provide an updated orbit. The radial extension of H2S is found to be consistent with direct release from the nucleus. SO displays an extended radial distribution. Assuming that SO2 is the parent of SO, the photodissociation rate of SO is measured to be 1.5 E-4 s-1 at 1 AU from the Sun. This is lower than most laboratory-based estimates and may suggest that SO is not solely produced by SO2 photolysis. From the observations of J(2-1) and J(5-4) CS lines, we deduce a CS photodissociation rate of 1 to 5 E-5 s-1. The photodissociation rate of CS2, the likely parent of CS, cannot be constrained due to insufficient resolution, but our data are consistent with published values. These observations illustrate the cometary science that will be performed with the future ALMA interferometer.Comment: Accepted for publication in Astronomy & Astrophysic

    13C—methyl formate : observations of a sample of high mass starforming regions including Orion—KL and spectroscopic characterization

    Get PDF
    We have surveyed a sample of massive star-forming regions located over a range of distances from the Galactic centre for methyl formate, HCOOCH3, and its isotopologues H13COOCH3 and HCOO13CH3. The observations were carried out with the APEX telescope in the frequency range 283.4-287.4 GHz. Based on the APEX observations, we report tentative detections of the 13C-methyl formate isotopologue HCOO13CH3 towards the following four massive star-forming regions: Sgr B2(N-LMH), NGC 6334 IRS 1, W51 e2 and G19.61-0.23. In addition, we have used the 1 mm ALMA science verification observations of Orion-KL and confirm the detection of the 13C-methyl formate species in Orion-KL and image its spatial distribution. Our analysis shows that the 12C/13C isotope ratio in methyl formate toward Orion-KL Compact Ridge and Hot Core-SW components (68.4±10.1 and 71.4±7.8, respectively) are, for both the 13C-methyl formate isotopologues, commensurate with the average 12C/13C ratio of CO derived toward Orion-KL. Likewise, regarding the other sources, our results are consistent with the 12C/13C in CO. We also report the spectroscopic characterization, which includes a complete partition function, of the complex H13COOCH3 and HCOO13CH3 species. New spectroscopic data for both isotopomers H13COOCH3 and HCOO13CH3, presented in this study, has made it possible to measure this fundamentally important isotope ratio in a large organic molecule for the first time.This work was supported by the National Science Foundation under grant 1008800. We are grateful to the Ministerio de Economia y Competitividad of Spain for the financial support through grant No. FIS2011-28738-C02-02 and to the French Government through grant No. ANR-08-BLAN-0054 and the French PCMI (Programme National de Physique Chimie du Milieu Interstellaire). This paper makes use of the following ALMA data: ADS/JAO. ALMA#2011.0.00009.SV.ALMAis a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ. C.F. thanks Dahbia Talbi, Eric Herbst, and Anthony Remijan for enlightening discussions. Finally, we thank the anonymous referee for helpful comments

    The effect of density and feature size on mechanical properties of isostructural metaffic foams produced by additive manufacturing

    Get PDF
    Simple models describing the relationship between basic mechanical properties and the relative density of various types of porous metals (such as foams, sponges and lattice structures) are well established. Carefully evaluating these relationships experimentally is challenging, however, because of the stochastic structure of foams and the fact that it is difficult to systematically isolate density changes from variations in other factors, such as pore size and pore distribution. Here a new method for producing systematic sets of stochastic foams is employed based on electron beam melting (EBM) additive manufacturing (AM). To create idealised structures, structural blueprints were reverse-engineered by inverting X-ray computed tomographs of a randomly packed bed of glass beads. This three-dimensional structure was then modified by computer to create five foams of different relative density ρr, but otherwise consistent structure. Yield strength and Young’s modulus have been evaluated in compression tests and compared to existing models for foams. A power of 3 rather than a squared dependence of stiffness on relative density is found, which agrees with a recent model derived for replicated foams. A similar power of 3 relation was found for yield strength. Further analysis of the strength of nominally fully dense rods of different diameters built by EBM AM suggest that surface defects mean that the minimum size of features that can be created by EBM with similar strengths to machined samples is ∌1 mm
    • 

    corecore