263 research outputs found

    Verification of the PROS timing analysis package

    Get PDF
    ROSAT observations of known pulsars are used to verify the functions of timing programs. The Crab Pulsar and PSR 0540-69, with 33 and 50 millisecond periods, are used to examine the fast Fourier transform and the epoch-folding task used to search for periodic signals. These fast pulsars provide a more vigorous test of the system than those with periods of a few seconds

    An Ixodes scapularis protein required for survival of Anaplasma phagocytophilum in tick salivary glands

    Get PDF
    Anaplasma phagocytophilum is the agent of human anaplasmosis, the second most common tick-borne illness in the United States. This pathogen, which is closely related to obligate intracellular organisms in the genera Rickettsia, Ehrlichia, and Anaplasma, persists in ticks and mammalian hosts; however, the mechanisms for survival in the arthropod are not known. We now show that A. phagocytophilum induces expression of the Ixodes scapularis salp16 gene in the arthropod salivary glands during vector engorgement. RNA interference–mediated silencing of salp16 gene expression interfered with the survival of A. phagocytophilum that entered ticks fed on A. phagocytophilum–infected mice. A. phagocytophilum migrated normally from A. phagocytophilum–infected mice to the gut of engorging salp16-deficient ticks, but up to 90% of the bacteria that entered the ticks were not able to successfully infect I. scapularis salivary glands. These data demonstrate the specific requirement of a pathogen for a tick salivary protein to persist within the arthropod and provide a paradigm for understanding how Rickettsia-like pathogens are maintained within vectors

    Imaging single cells in a beam of live cyanobacteria with an X-ray laser

    Get PDF
    Citation: van der Schot, G., Svenda, M., Maia, F., Hantke, M., DePonte, D. P., Seibert, M. M., . . . Ekeberg, T. (2015). Imaging single cells in a beam of live cyanobacteria with an X-ray laser. Nature Communications, 6, 9. doi:10.1038/ncomms6704There exists a conspicuous gap of knowledge about the organization of life at mesoscopic levels. Ultra-fast coherent diffractive imaging with X-ray free-electron lasers can probe structures at the relevant length scales and may reach sub-nanometer resolution on micron-sized living cells. Here we show that we can introduce a beam of aerosolised cyanobacteria into the focus of the Linac Coherent Light Source and record diffraction patterns from individual living cells at very low noise levels and at high hit ratios. We obtain two-dimensional projection images directly from the diffraction patterns, and present the results as synthetic X-ray Nomarski images calculated from the complex-valued reconstructions. We further demonstrate that it is possible to record diffraction data to nanometer resolution on live cells with X-ray lasers. Extension to sub-nanometer resolution is within reach, although improvements in pulse parameters and X-ray area detectors will be necessary to unlock this potential.Additional Authors: Almeida, N. F.;Odic, D.;Hasse, D.;Carlsson, G. H.;Larsson, D. S. D.;Barty, A.;Martin, A. V.;Schorb, S.;Bostedt, C.;Bozek, J. D.;Rolles, D.;Rudenko, A.;Epp, S.;Foucar, L.;Rudek, B.;Hartmann, R.;Kimmel, N.;Holl, P.;Englert, L.;Loh, N. T. D.;Chapman, H. N.;Andersson, I.;Hajdu, J.;Ekeberg, T

    A programmed cell death pathway in the malaria parasite Plasmodium falciparum has general features of mammalian apoptosis but is mediated by clan CA cysteine proteases

    Get PDF
    Several recent discoveries of the hallmark features of programmed cell death (PCD) in Plasmodium falciparum have presented the possibility of revealing novel targets for antimalarial therapy. Using a combination of cell-based assays, flow cytometry and fluorescence microscopy, we detected features including mitochondrial dysregulation, activation of cysteine proteases and in situ DNA fragmentation in parasites induced with chloroquine (CQ) and staurosporine (ST). The use of the pan-caspase inhibitor, z-Val-Ala-Asp-fmk (zVAD), and the mitochondria outer membrane permeabilization (MOMP) inhibitor, 4-hydroxy-tamoxifen, enabled the characterization of a novel CQ-induced pathway linking cysteine protease activation to downstream mitochondrial dysregulation, amplified protease activity and DNA fragmentation. The PCD features were observed only at high (μM) concentrations of CQ. The use of a new synthetic coumarin-labeled chloroquine (CM-CQ) showed that these features may be associated with concentration-dependent differences in drug localization. By further using cysteine protease inhibitors z-Asp-Glu-Val-Asp-fmk (zDEVD), z-Phe-Ala-fmk (zFA), z-Phe-Phe-fmk (zFF), z-Leu-Leu-Leu-fmk (zLLL), E64d and CA-074, we were able to implicate clan CA cysteine proteases in CQ-mediated PCD. Finally, CQ induction of two CQ-resistant parasite strains, 7G8 and K1, reveals the existence of PCD features in these parasites, the extent of which was less than 3D7. The use of the chemoreversal agent verapamil implicates the parasite digestive vacuole in mediating CQ-induced PCD

    Gas Dynamic Virtual Nozzle for Generation of Microscopic Droplet Streams

    Full text link
    As shown by Ganan-Calvo and co-workers, a free liquid jet can be compressed in iameter through gas-dynamic forces exerted by a co-flowing gas, obviating the need for a solid nozzle to form a microscopic liquid jet and thereby alleviating the clogging problems that plague conventional droplet sources of small diameter. We describe in this paper a novel form of droplet beam source based on this principle. The source is miniature, robust, dependable, easily fabricated, and eminently suitable for delivery of microscopic liquid droplets, including hydrated biological samples, into vacuum for analysis using vacuum instrumentation. Monodisperse, single file droplet streams are generated by triggering the device with a piezoelectric actuator. The device is essentially immune to clogging

    Coherent diffractive imaging of microtubules using an X-ray laser

    Get PDF
    X-ray free electron lasers (XFELs) create new possibilities for structural studies of biological objects that extend beyond what is possible with synchrotron radiation. Serial femtosecond crystallography has allowed high-resolution structures to be determined from micro-meter sized crystals, whereas single particle coherent X-ray imaging requires development to extend the resolution beyond a few tens of nanometers. Here we describe an intermediate approach: the XFEL imaging of biological assemblies with helical symmetry. We collected X-ray scattering images from samples of microtubules injected across an XFEL beam using a liquid microjet, sorted these images into class averages, merged these data into a diffraction pattern extending to 2 nm resolution, and reconstructed these data into a projection image of the microtubule. Details such as the 4 nm tubulin monomer became visible in this reconstruction. These results illustrate the potential of single-molecule X-ray imaging of biological assembles with helical symmetry at room temperature

    X ray emission spectroscopy of bulk liquid water in no man s land

    Get PDF
    The structure of bulk liquid water was recently probed by x ray scattering below the temperature limit of homogeneous nucleation TH of amp; 8764;232 K [J. A. Sellberg et al., Nature 510, 381 384 2014 ]. Here, we utilize a similar approach to study the structure of bulk liquid water below TH using oxygen K edge x ray emission spectroscopy XES . Based on previous XES experiments [T. Tokushima et al., Chem. Phys. Lett. 460, 387 400 2008 ] at higher temperatures, we expected the ratio of the 1b1 amp; 8242; and 1b1 amp; 8242; amp; 8242; peaks associated with the lone pair orbital in water to change strongly upon deep supercooling as the coordination of the hydrogen H bonds becomes tetrahedral. In contrast, we observed only minor changes in the lone pair spectral region, challenging an interpretation in terms of two interconverting species. A number of alternative hypotheses to explain the results are put forward and discussed. Although the spectra can be explained by various contributions from these hypotheses, we here emphasize the interpretation that the line shape of each component changes dramatically when approaching lower temperatures, where, in particular, the peak assigned to the proposed disordered component would become more symmetrical as vibrational interference becomes more importan

    Liquid-phase mega-electron-volt ultrafast electron diffraction

    Get PDF
    The conversion of light into usable chemical and mechanical energy is pivotal to several biological and chemical processes, many of which occur in solution. To understand the structure-function relationships mediating these processes, a technique with high spatial and temporal resolutions is required. Here, we report on the design and commissioning of a liquid-phase mega-electron-volt (MeV) ultrafast electron diffraction instrument for the study of structural dynamics in solution. Limitations posed by the shallow penetration depth of electrons and the resulting information loss due to multiple scattering and the technical challenge of delivering liquids to vacuum were overcome through the use of MeV electrons and a gas-accelerated thin liquid sheet jet. To demonstrate the capabilities of this instrument, the structure of water and its network were resolved up to the 3 rd hydration shell with a spatial resolution of 0.6 Å; preliminary time-resolved experiments demonstrated a temporal resolution of 200 fs
    corecore