352 research outputs found

    When does selection favor learning from the old? Social Learning in age-structured populations

    Get PDF
    Culture and demography jointly facilitate flexible human adaptation, yet it still remains unclear how social learning operates in populations with age structure. Specifically, how do demographic processes affect the adaptive value of culture, cultural adaptation and population growth and when does selection favor copying the behavior of older vs. younger individuals? Here, we develop and analyze a mathematical model of the evolution of social learning in a population with different age classes. We find that adding age structure alone does not resolve Rogers' paradox, i.e. the finding that social learning can evolve without increasing population fitness. Cultural transmission in combination with demographic filtering, however, can lead to much higher adaptation levels. This is because by increasing proportions of adaptive behavior in older age classes, demographic filtering constitutes an additional adaptive force that social learners can benefit from. Moreover, older age classes tend to have higher proportions of adaptive behavior when the environment is relatively stable and adaptive behavior is hard to acquire but confers large survival advantages. Through individual-based simulations comparing temporal and spatial variability in the environment, we find a ``copy older over younger models''-strategy only evolves readily when social learning is erroneous. The opposite ``copy the younger''-strategy is adaptive when the environment fluctuates frequently but still maintains large proportions of social learners. Our results demonstrate that age structure can substantially alter cultural dynamics and should be addressed in further theoretical and empirical work

    A causal framework for cross-cultural generalizability

    Get PDF
    Behavioral researchers increasingly recognize the need for more diverse samples that capture the breadth of human experience. Current attempts to establish generalizability across populations focus on threats to validity, constraints on generalization, and the accumulation of large, cross-cultural data sets. But for continued progress, we also require a framework that lets us determine which inferences can be drawn and how to make informative cross-cultural comparisons. We describe a generative causal-modeling framework and outline simple graphical criteria to derive analytic strategies and implied generalizations. Using both simulated and real data, we demonstrate how to project and compare estimates across populations and further show how to formally represent measurement equivalence or inequivalence across societies. We conclude with a discussion of how a formal framework for generalizability can assist researchers in designing more informative cross-cultural studies and thus provides a more solid foundation for cumulative and generalizable behavioral research

    Holevo's bound from a general quantum fluctuation theorem

    Full text link
    We give a novel derivation of Holevo's bound using an important result from nonequilibrium statistical physics, the fluctuation theorem. To do so we develop a general formalism of quantum fluctuation theorems for two-time measurements, which explicitly accounts for the back action of quantum measurements as well as possibly non-unitary time evolution. For a specific choice of observables this fluctuation theorem yields a measurement-dependent correction to the Holevo bound, leading to a tighter inequality. We conclude by analyzing equality conditions for the improved bound.Comment: 5 page

    The second law and beyond in microscopic quantum setups

    Full text link
    The Clausius inequality (CI) is one of the most versatile forms of the second law. Although it was originally conceived for macroscopic steam engines, it is also applicable to quantum single particle machines. Moreover, the CI is the main connecting thread between classical microscopic thermodynamics and nanoscopic quantum thermodynamics. In this chapter, we study three different approaches for obtaining the CI. Each approach shows different aspects of the CI. The goals of this chapter are: (i) To show the exact assumptions made in various derivations of the CI. (ii) To elucidate the structure of the second law and its origin. (iii) To discuss the possibilities each approach offers for finding additional second-law like inequalities. (iv) To pose challenges related to the second law in nanoscopic setups. In particular, we introduce and briefly discuss the notions of exotic heat machines (X machines), and "lazy demons".Comment: As a chapter of: F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso (eds.), "Thermodynamics in the quantum regime - Recent Progress and Outlook", (Springer International Publishing). v1 does not include references to other book chapter

    Quantum fluctuation theorems in the strong damping limit

    Full text link
    We consider a driven quantum particle in the strong friction regime described by the quantum Smoluchowski equation. We derive Crooks and Jarzynski type relations for the reduced quantum system by properly generalizing the entropy production to take into account the non-Gibbsian character of the equilibrium distribution. In the case of a nonequilibrium steady state, we obtain a quantum version of the Hatano-Sasa relation. We, further, propose an experiment with driven Josephson junctions that would allow to investigate nonequilibrium entropy fluctuations in overdamped quantum systems.Comment: 6 pages, 2 figures, with simplified derivation and examples adde

    Hierarchical Equations of Motion Approach to Quantum Thermodynamics

    Get PDF
    We present a theoretical framework to investigate quantum thermodynamic processes under non-Markovian system-bath interactions on the basis of the hierarchical equations of motion (HEOM) approach, which is convenient to carry out numerically "exact" calculations. This formalism is valuable because it can be used to treat not only strong system-bath coupling but also system-bath correlation or entanglement, which will be essential to characterize the heat transport between the system and quantum heat baths. Using this formalism, we demonstrated an importance of the thermodynamic effect from the tri-partite correlations (TPC) for a two-level heat transfer model and a three-level autonomous heat engine model under the conditions that the conventional quantum master equation approaches are failed. Our numerical calculations show that TPC contributions, which distinguish the heat current from the energy current, have to be take into account to satisfy the thermodynamic laws.Comment: 9 pages, 4 figures. As a chapter of: F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso (eds.), "Thermodynamics in the quantum regime - Recent Progress and Outlook", (Springer International Publishing

    Engineered swift equilibration of a Brownian particle

    Get PDF
    A fundamental and intrinsic property of any device or natural system is its relaxation time relax, which is the time it takes to return to equilibrium after the sudden change of a control parameter [1]. Reducing tautau relax , is frequently necessary, and is often obtained by a complex feedback process. To overcome the limitations of such an approach, alternative methods based on driving have been recently demonstrated [2, 3], for isolated quantum and classical systems [4--9]. Their extension to open systems in contact with a thermostat is a stumbling block for applications. Here, we design a protocol,named Engineered Swift Equilibration (ESE), that shortcuts time-consuming relaxations, and we apply it to a Brownian particle trapped in an optical potential whose properties can be controlled in time. We implement the process experimentally, showing that it allows the system to reach equilibrium times faster than the natural equilibration rate. We also estimate the increase of the dissipated energy needed to get such a time reduction. The method paves the way for applications in micro and nano devices, where the reduction of operation time represents as substantial a challenge as miniaturization [10]. The concepts of equilibrium and of transformations from an equilibrium state to another, are cornerstones of thermodynamics. A textbook illustration is provided by the expansion of a gas, starting at equilibrium and expanding to reach a new equilibrium in a larger vessel. This operation can be performed either very slowly by a piston, without dissipating energy into the environment, or alternatively quickly, letting the piston freely move to reach the new volume

    Quantum Fluctuation Relations for the Lindblad Master Equation

    Get PDF
    An open quantum system interacting with its environment can be modeled under suitable assumptions as a Markov process, described by a Lindblad master equation. In this work, we derive a general set of fluctuation relations for systems governed by a Lindblad equation. These identities provide quantum versions of Jarzynski-Hatano-Sasa and Crooks relations. In the linear response regime, these fluctuation relations yield a fluctuation-dissipation theorem (FDT) valid for a stationary state arbitrarily far from equilibrium. For a closed system, this FDT reduces to the celebrated Callen-Welton-Kubo formula

    Measurement of inclusive D*+- and associated dijet cross sections in photoproduction at HERA

    Get PDF
    Inclusive photoproduction of D*+- mesons has been measured for photon-proton centre-of-mass energies in the range 130 < W < 280 GeV and a photon virtuality Q^2 < 1 GeV^2. The data sample used corresponds to an integrated luminosity of 37 pb^-1. Total and differential cross sections as functions of the D* transverse momentum and pseudorapidity are presented in restricted kinematical regions and the data are compared with next-to-leading order (NLO) perturbative QCD calculations using the "massive charm" and "massless charm" schemes. The measured cross sections are generally above the NLO calculations, in particular in the forward (proton) direction. The large data sample also allows the study of dijet production associated with charm. A significant resolved as well as a direct photon component contribute to the cross section. Leading order QCD Monte Carlo calculations indicate that the resolved contribution arises from a significant charm component in the photon. A massive charm NLO parton level calculation yields lower cross sections compared to the measured results in a kinematic region where the resolved photon contribution is significant.Comment: 32 pages including 6 figure

    Measurement of Jet Shapes in Photoproduction at HERA

    Full text link
    The shape of jets produced in quasi-real photon-proton collisions at centre-of-mass energies in the range 134−277134-277 GeV has been measured using the hadronic energy flow. The measurement was done with the ZEUS detector at HERA. Jets are identified using a cone algorithm in the η−ϕ\eta - \phi plane with a cone radius of one unit. Measured jet shapes both in inclusive jet and dijet production with transverse energies ETjet>14E^{jet}_T>14 GeV are presented. The jet shape broadens as the jet pseudorapidity (ηjet\eta^{jet}) increases and narrows as ETjetE^{jet}_T increases. In dijet photoproduction, the jet shapes have been measured separately for samples dominated by resolved and by direct processes. Leading-logarithm parton-shower Monte Carlo calculations of resolved and direct processes describe well the measured jet shapes except for the inclusive production of jets with high ηjet\eta^{jet} and low ETjetE^{jet}_T. The observed broadening of the jet shape as ηjet\eta^{jet} increases is consistent with the predicted increase in the fraction of final state gluon jets.Comment: 29 pages including 9 figure
    • 

    corecore