Abstract

An open quantum system interacting with its environment can be modeled under suitable assumptions as a Markov process, described by a Lindblad master equation. In this work, we derive a general set of fluctuation relations for systems governed by a Lindblad equation. These identities provide quantum versions of Jarzynski-Hatano-Sasa and Crooks relations. In the linear response regime, these fluctuation relations yield a fluctuation-dissipation theorem (FDT) valid for a stationary state arbitrarily far from equilibrium. For a closed system, this FDT reduces to the celebrated Callen-Welton-Kubo formula

    Similar works