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General Article

The behavioral and social sciences have been criticized 
for relying excessively on WEIRD samples in which most 
participants are Western, educated, and from industrial-
ized, rich, and democratic countries (Apicella et  al., 
2020; Henrich, 2020; Henrich et al., 2010; Muthukrishna 
et al., 2020). Research has established substantial cross-
cultural variation in key psychological domains, such as 
thinking styles (e.g., Masuda & Nisbett, 2001; Nisbett & 
Miyamoto, 2005), economic preferences (e.g., Falk et al., 
2018; Gächter & Schulz, 2016), personality structure 
(e.g., Smaldino et al., 2019), and moral judgments (e.g., 
Awad et al., 2020; Curtin et al., 2020), and furthermore 
demonstrated that WEIRD subjects often represent outli-
ers among present-day societies (Apicella et al., 2020). 
These findings make it clear that broad, unqualified gen-
eralizations about human psychology based on WEIRD 
samples alone are rarely justified.

Fortunately, behavioral scientists increasingly acknowl-
edge the problem. Cross-cultural psychologists and 
anthropologists are making progress in documenting 
variation in psychological phenomena (Apicella et  al., 
2020). In addition to long-term fieldwork and experimen-
tal comparisons across societies, large-scale collaborative 
projects have started compiling extensive data sets 
addressing cross-cultural variation and commonality in 
domains such as music (Mehr et al., 2019), social per-
ception ( Jones et  al., 2021), and economic (Henrich 
et  al., 2001) and moral decision-making (Awad et  al., 
2018). Accompanying the surge in cross-cultural studies, 
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researchers increasingly consider the historical and politi-
cal contexts of their work as well as its ethical ramifica-
tions (e.g., Broesch et al., 2020; Clancy & Davis, 2019; 
Ghai, 2021; Urassa et al., 2021).

New data bring new problems. How can valid com-
parisons and conclusions be derived from cross-cultural 
samples? Just as there are many ways to misinterpret 
data from a single society, there are even more ways to 
misinterpret differences or similarities between societies. 
In each case, one must first generalize from each sample 
to each population before valid comparisons can be 
made between populations. This is a generalizability 
problem on a global scale.

Methodologists have long discussed the importance of 
generalizability or “external validity” and its relationship to 
other kinds of validity (internal, statistical conclusion and 
construct validity; e.g., Berkowitz & Donnerstein, 1982; 
Calder et al., 1983; Campbell, 1957; Cock & Campbell, 
1976; Winer, 1999). Researchers trained in psychology and 
other behavioral sciences may be familiar with catalogs of 
threats to validity that describe prototypical problematic 
situations (Matthay & Glymour, 2020). These lists can grow 
rapidly. For external validity alone, Shadish et al. (2002) 
distinguished five types of threats that include interactions 
of the causal relationship of interest with specific units, 
settings, mediators, outcomes, and treatment variations.

Because of these threats, there have been reasonable 
calls for constraint. Yarkoni (2022), for instance, argued 
that poor alignment between verbal hypotheses and 
quantitative inference lies at the heart of many of psy-
chology’s problems; narrow and seemingly arbitrary 
operationalizations of broad constructs invalidate the 
intended generalizations. As a remedy against, often 
implicit, unwarranted generalizations, researchers have 
proposed to add mandatory “Constraints on generality 
(COG)” statements to all empirical articles (Simons et al., 
2017; Tiokhin et al., 2019). By specifying sample char-
acteristics and assessing its representativeness of wider 
populations, such COG statements are meant to disci-
pline authors to explicitly state intended generalizations 
and thereby improve transparency.

These steps toward a more global and generalizable 
science are overdue. However, under the current frame-
work—with its emphasis on threats to validity, constraints, 
and the accumulation of cross-cultural samples—only 
limited progress can be made. Lists of threats are devices 
that raise awareness of inferential problems, but they are 
not also solutions. They do not spell out which inferences 
are warranted and under which assumptions. This leads 
to the impression that any claim that goes beyond the 
precise operationalization, population, and historical con-
text of a study overgeneralizes.

From this perspective, it is understandable that 
researchers are eager to collect rich data sets just to 
describe what is “out there” (e.g., Barrett, 2020; Rozin, 
2001). But even this is not possible without an explicit 

framework that licenses generalization. In a cross-cultural 
context, even “mere description” and simple comparisons 
rely on usually implicit assumptions that permit moving 
from sample to population and across populations.

Threats and constraints forbid inference; we require 
a framework that also licenses inference. Such a frame-
work would inform researchers about the assumptions 
underlying potential generalizations, assist them in the 
design of empirical studies, and show them how to con-
struct appropriate statistical procedures. Such a frame-
work already exists and has sparked a “causal revolution” 
(Pearl, 2018) in computer science and machine learning, 
but it is not a standard part of training in the behavioral 
and social sciences. This framework depends on trans-
parent, generative models of research. One key idea is 
that generalizability does not depend on the presence 
of sample differences per se or on raw statistical associa-
tions. The conditions that license generalization and 
comparison with other populations depend on the causal 
relations between variables and the exact mechanisms 
by which populations differ.

Many cross-cultural scientists already pay close atten-
tion to concerns of causal inference and comparison 
without use of a formal framework (e.g., Norenzayan & 
Heine, 2005; Pollet et al., 2014). For these researchers, 
a formalized framework can provide a vocabulary to 
articulate their concerns and work toward solutions in 
a more systematic manner.

For instance, many researchers will share the intuition 
that the demographic breakdown and other relevant fac-
tors should be somehow standardized across groups to 
eliminate potential confounds. A standard approach to 
dealing with such threats to validity and cross-cultural 
comparison is to condition on (i.e., adjust or “control” for) 
any potential confounds such as age, income, or meth-
odological differences by, for example, including such 
variables as predictors in multiple regression (condition-
ing on a variable means to analyze the values of other 
variables for a given, constant value of the conditioned 
variable). But it is not enough to mechanically control for 
a set of variables that may vary across populations. One 
reason is that not all controls are good—adding variables 
can bias inference as much as it can correct it (Cinelli 
et al., 2020). An important example is “collider bias,” in 
which a spurious association between two variables arises 
when a third variable, which is jointly caused by those 
variables, is included. As we show below, which variables 
act as confounds depends on the assumed causal struc-
ture and the specific research question. A formal genera-
tive framework lets us logically deduce which variables 
we should—and should not—control for in any cross-
cultural comparison. Going beyond the question of which 
variables to include, it also helps us derive the appropriate 
statistical estimates that actually align with the scientific 
goal at hand. Coefficients and parameters themselves are 
valid measures of difference or causal effect in only the 
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simplest models (Morgan & Winship, 2015; Rohrer & 
Arslan, 2021). Knowing a cause means that we can predict 
the consequences of an intervention (Asteriou & Hall, 
2015; Athey & Imbens, 2016; Greene, 2000; Morgan & 
Winship, 2015; Woodward, 2005), and most causal ques-
tions require the construction of “marginal” effects, in 
which we average the effect of interest over the influence 
of all other important variables to find out how a depen-
dent variable would change if we intervened on the  
independent variable. Such “poststratification,” that is, 
reweighting of model estimates to answer specific causal 
questions, becomes even more complicated when com-
parisons are made between societies (Oganisian & Roy, 
2021).

In short, there is no universally valid procedure for 
cross-cultural inference. For each inferential problem, 
we have to start with a generative causal model that lets 
us determine the role variables play in the analysis and 
how to construct statistical summaries that are logically 
derived from transparent research goals.

In the rest of this article, we outline a formal frame-
work for cross-cultural generalizability based on recent 
advances in the fields of causal inference and data fusion 
(Bareinboim & Pearl, 2016; Lundberg et al., 2021; Pearl, 
2015; Pearl & Bareinboim, 2014). We apply these estab-
lished formal tools to commonplace questions in cross-
cultural research: (a) description of cultural variation, (b) 
comparison of causal effects identified through experi-
ments, and (c) measurement equivalence or inequiva-
lence of latent constructs. To help researchers adopt this 
approach, we provide example causal diagrams and sta-
tistical analyses using simulated and real-world cross-
cultural data. Finally, we discuss how our framework can 
assist researchers in planning targeted cross-cultural com-
parisons and designing more informative studies.

A Causal Framework

A causal framework for cross-cultural research requires 
us to state (a) what we want to know, that is, the esti-
mand; (b) a generative model of the evidence, that is, a 
causal model of how the observed data came into exis-
tence; (c) a generative model of how populations may 
differ; and (d) a tailored estimation strategy that allows 
us to learn from data. We first develop these require-
ments in general terms. In later sections, we discuss 
specific examples.

Theoretical and empirical estimands

The starting point for any empirical analysis is the theo-
retical estimand. This is the target of the analysis derived 
from theory (for an excellent introduction, see Lundberg 
et al., 2021). A theoretical estimand consists of a unit-
specific quantity and a target population. It is defined 
outside of any statistical model—not in terms of, for 

example, regression coefficients. We may simply be 
interested in the mean of a variable in a certain popula-
tion (e.g., probability that individual i chooses the pro-
social option in a dictator game, averaged over all 
individuals i in target population), or we may be inter-
ested in the average treatment effect of some indepen-
dent variable on an outcome in a certain population 
(e.g., effect of norm prime on probability that individual 
i chooses prosocial option, averaged over all individuals 
i in target population; examples inspired by House et al., 
2020; see below).

Once the theoretical estimand is set, we need to link 
it to an empirical estimand. While the theoretical esti-
mand might contain unobservable quantities such as 
counterfactuals (“What would have been true under dif-
ferent circumstances?”), the empirical estimand is defined 
solely in terms of observed data. We cannot observe the 
average probability of prosocial choice for the whole 
population; however, we can try to estimate it from a 
sample. We also cannot observe individual-level causal 
effects, but we may estimate their average by considering 
observed differences between randomized experimental 
conditions.

In the context of cross-cultural research, the distinc-
tion between theoretical and empirical estimands 
encourages researchers to explicitly spell out assump-
tions about how theoretical constructs (e.g., prosociality) 
can be operationalized in comparable ways across soci-
eties (“construct validity”). This issue of measurement 
equivalence or inequivalence and bias is further dis-
cussed in the “Generalizing Latent Constructs: Measure-
ment equivalence or inequivalence” section.

Directed acyclic graphs

A valid link between theoretical and empirical estimand 
requires causal assumptions. Generative models embody 
causal assumptions, and there are many forms these 
models can take. One popular approach is directed acy-
clic graphs (DAGs). This approach is accessible thanks 
to its graphical nature, it can be used to develop an 
intuitive understanding of inferential obstacles, and it can 
alert researchers to inferential opportunities they had not 
considered. There are other suitable ways to spell out 
assumptions (e.g., psychological process models; Farrell 
& Lewandowsky, 2018), and not all generative models 
can be formalized with the help of DAGs. But DAGs 
provide a pragmatic starting point and can be extended 
to include commonplace issues such as measurement 
error and missing data (see McElreath, 2020, Chapter 15).

Multiple comprehensive yet accessible introductions to 
DAGs are available (Elwert, 2013; Pearl et al., 2016; Pearl 
& Mackenzie, 2018; Rohrer, 2018); thus, we focus only on 
the essentials. In DAGs, nodes represent variables, and 
arrows represent causal effects. For example, Figure 1a 
captures a set of assumptions regarding the associations 
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between age, prosociality, reputation, and the outcome of 
a dictator game. The arrows indicate causal effects that 
may take any functional form, which includes any possible 
interaction between variables that jointly affect another 
variable. Individual paths can be identified by traveling 
along the arrows connecting any pair of variables. These 
paths can be broken down into fundamental structures 
(see Box 1) that determine whether a given path transmits 
an association between variables and whether the associa-
tion is causal or noncausal.

Suppose we were interested in the causal influence of 
prosociality on dictator-game choice in the population 
from which we randomly drew our sample. If we are will-
ing to assume that the depicted DAG is a causal DAG—
which means that it includes all common causes of any 
pair of variables (Elwert, 2013)—we can algorithmically 
derive which variables need to be “conditioned” (see 
Box 1) on to identify the causal effect of interest. In this 
particular example, the answer is easy. There is only one 
open noncausal path (see Box 1) between prosociality 

Age Prosociality

Reputation

DG Choice

Norm Prime

U

Age Prosociality

Reputation

DG Choice

Norm Prime

U

S S
a b

Fig. 1. (a) A simple directed acyclic graph capturing the following assumptions: Age has a direct causal effect on an 
individual’s prosociality, their reputation within their community, and the outcome of the dictator game (DG). Pro-
sociality and reputation share an unobserved common cause, U . Prosociality in turn affects the individual’s choice in 
the dictator game, which is also affected by the randomized norm prime. (b) Selection diagram using selection nodes 
S  to represent the assumption that populations differ both in their age distribution and the effect of norm primes on 
the choice in the dictator game.

Box 1. Elementary Causal Structures

Any path connecting two variables can be broken down into three fundamental causal structures: chains, forks, 
and inverted forks (Elwert, 2013; Rohrer, 2018).

Chains: X → M → Y. The chain transmits a causal association between X and Y. If we condition on M (the mediator; 
e.g., through statistical adjustment, sample stratification, or by design), the transmission of the association is blocked.

Forks: X ← C → Y. The fork transmits a noncausal association between X and Y. If we condition on C (the 
confounder), the transmission of the association is blocked.

Inverted forks: X → L ← Y. The inverted fork transmits no association. If we condition on L (the collider), a 
noncausal association between X and Y is transmitted.

A path between X and Y is said to be d-separated if it contains a confounder or mediator that has been 
conditioned on or a collider that has not been conditioned on (Pearl, 1988). This implies that the path will not 
transmit any association; it is “blocked.” For a statistical procedure to recover a causal association, it must be 
designed to block any noncausal paths. For example, in the directed acyclic graph below, we wish to measure 
the causal association between X and Y. There are, however, two noncausal paths that also connect X to Y. The 
first is X C Y← → . This is a confounder path, and we close it by conditioning on C. The second noncausal path 
is X A C B Y← → ← → . In this path, the variable C is not a confound but rather a collider. As a result, this path 
would normally be closed. But after we condition on C to close the first path, it opens the second path. Therefore, 
we must also condition on A or B to close this second path. Therefore, a procedure that measures the association 
between X and Y, stratified by C and B (or A; but using B also increases precision [Pearl et al. 2016] and may thus 
be preferable) would measure the causal effect of X on Y.

X

A C B

Y
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and dictator-game choice: Prosociality ← Age → Dictator-
game choice. Because age is a common cause of proso-
ciality and dictator-game choice, some of the association 
between both variables is due to this noncausal path. This 
path can be blocked by conditioning on age (again, see 
Box 1). Thus, we have discovered a way to link the theo-
retical estimand (the effect of prosociality on dictator-game 
choice in our population) to an actual empirical estimand 
that we can estimate from observable data. If, instead, our 
theoretical estimand was the effect of the norm prime, no 
conditioning would be necessary for causal identification: 
Because the norm prime has been randomized, no back-
door paths can exist (no arrows point into the randomized 
variable). The simple mean difference between experi-
mental groups would be an empirical estimand that cor-
responds to the theoretical estimand under the assumptions 
embodied in the DAG (taking into account other variables 
that influence the outcome may still be helpful to improve 
precision).

Our DAG is, of course, incomplete and possibly 
wrong, in particular when it comes to the nodes that 
have not been experimentally manipulated. But an 
incomplete model is still an improvement over no model 
at all. In the absence of causal assumptions, whether in 
a DAG or otherwise, no analysis can be scientifically 
justified. Even an unrealistic DAG can help identify spe-
cific problems as well as implicit assumptions underlying 
more casually drawn causal inferences. Furthermore, 
such graphs make it easier to contrast the implications 
of different sets of assumptions that often lie at the heart 
of scientific disagreements. Throughout this article, we 
use DAGs in this spirit—as a pragmatic tool to commu-
nicate assumptions and improve inference.

Selection diagrams and generalizability

DAGs can be extended to address generalizability through 
the use of selection diagrams (Pearl & Bareinboim, 2014). 
When researchers consider multiple populations, selec-
tion diagrams allow them to precisely define the local 
mechanisms by which populations are assumed to differ, 
as represented by “selection nodes.” Selection nodes are 
not variables but, rather, indicate which nodes have culture-
specific distributions or causal relationships.

Returning to our previous example, in  Figure 1b, we 
added two selection nodes. The S → Age node may 
indicate that populations are characterized by different 
age distributions, and the other S  node may indicate 
that the populations differ in the weight individuals give 
to norm primes when making decisions in the dictator 
game (recall that in a DAG, all variables that jointly affect 
another variable may interact). The absence of selection 
nodes in such graphs is of equal importance. It repre-
sents the assumption that certain mechanisms are the 
same across populations. For instance, the diagram in 

Figure 1b implies that the development of prosociality 
with age does not vary among study populations. As 
shown below, it is this assumed invariance of certain 
mechanisms that makes generalizations possible.

Once we have a causal selection diagram, we can 
determine the scope for generalizability using logical 
rules. We can deduce when and how we can use data 
from one population to estimate a target quantity in 
another population, which is the central goal of the lit-
erature on transportability and data fusion (Bareinboim 
& Pearl, 2016; Cinelli & Pearl, 2021; Pearl, 2015; Pearl & 
Bareinboim, 2014). These logical rules can be com-
pressed in most contexts to a set of simple graphical 
criteria, allowing us to perform the logic with our eyes 
(see “Applying the Causal Framework” section).

In cross-cultural settings, the research question often 
does not directly concern transport. Instead of transport-
ing an estimate from one population to another, we 
instead have data sampled from multiple populations 
and want to make sense of the resulting numbers to 
learn more about whether, how, and why people differ 
from one another. However, such cross-cultural com-
parisons are still indirect exercises in transport because 
to compare distributions or causal effects in different 
populations, we must calculate what those distributions 
or effects would be if we changed the population.

Estimation: multilevel regression  
with poststratification

After establishing the logic of a generalization, one must 
actually compute it. For explicit generalization from sample 
to population and comparison across populations, we used 
multilevel regression with poststratification, a statistical 
technique that adjusts for differences between a sample 
population and a target population (Gao et  al., 2021; 
Gelman & Little, 1997; Wang et al., 2015). In a first step, the 
model uses partial pooling to obtain robust estimates for 
each “cell” (combination of attributes that we want to condi-
tion on; e.g., age/gender groups) taking into account infor-
mation gained from other cells (Gelman & Hill, 2006; 
McElreath, 2020). For the data examples below, we used 
Gaussian processes to obtain estimates for each gender and 
age group while treating age as a continuous dimension; 
similar ages were expected to be similar in terms of their 
prosocial tendencies. In the second step (the poststratifica-
tion), estimates for all cells are reweighted using the relative 
frequencies of individuals per cell in the target population 
(for detailed explanation and model equations, see Appen-
dix A in the Supplemental Material available online; for Stan 
[Carpenter et al., 2017] code used to implement all analy-
ses, see the GitHub repository: https://github.com/
DominikDeffner/Cross-Cultural-Generalizability).

Multilevel regression with poststratification enables us 
to learn from data and to project or “generalize” results 

https://github.com/DominikDeffner/Cross-Cultural-Generalizability
https://github.com/DominikDeffner/Cross-Cultural-Generalizability
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to populations beyond the study sample in a principled 
way. Which population to use for poststratification 
depends on the theoretical estimand, the target of infer-
ence, and causal assumptions about the data-generating 
process. Compared with more informal reweighing pro-
cedures, multilevel regression with poststratification 
propagates uncertainty through all steps of analysis and 
is thus particularly suited for the small samples common 
in cross-cultural research.

Note that although the use of multilevel regression is not 
logically required—there are other estimation approaches—
the use of poststratification is. The DAGs we describe 
below mandate poststratification as a logical conse-
quence of their structure. Informal reweighting is only 
sometimes equivalent to this approach. In every case, 
the proper way to reweight estimates is a consequence 
of causal assumptions.

Applying the Causal Framework

To illustrate our approach, we used a large-scale cross-
cultural project on societal diversity in prosocial behav-
ior as an empirical case study (House et al., 2020). The 
researchers administered a binary-choice version of the 
dictator game as a measure of costly sharing to 255 
adults and 833 children from eight populations spanning 
foragers, small-scale horticulturalists, and urban com-
munities (for demographic composition of samples, see 
Appendix D, Fig. S3, in the Supplemental Material). Partici-
pants were asked to choose between a “self-maximizing” 
option in which they would keep two rewards or a 
“prosocial” option in which they would keep one reward 
and give one to an anonymous peer. Children from six 
societies were divided into three experimental condi-
tions in which they viewed a short video with normative 
information before making their choices. These norm 
primes communicated which behavior was preferable 

(“Generous,” “Both OK,” or “Selfish”). We used this rich 
data set because it exemplifies the state of the art in 
experimental cross-cultural research and excels with 
respect to research transparency.

Generalizing description: cross-
cultural comparisons and demographic 
standardization

A basic aim of cross-cultural research is to describe 
cultural variation. In the simplest case, we might want 
to compare the prevalence of some institution or behav-
ior across societies. This seemingly innocuous task of 
“pure description” may actually refer to a number of 
different research questions that call for different proce-
dures. The example we provide is simplified and focuses 
on demography, but the point is not about demography. 
The same logic applies to all comparisons in which 
populations differ in any known background factors.

Drawing out the causal assumptions. Samples from 
different sites often differ in terms of their demographic 
profiles (here, their age and gender distribution), and 
these demographic variables might in turn affect the distri-
bution of the trait of interest.

How should researchers deal with these differences? 
The answer depends on the processes that generated 
the observed disparities. Demographic disparities among 
samples may result from (a) differences in the actual 
populations from which the samples are taken or (b) 
sampling procedures that differ among sites. For exam-
ple, if we observe that a sample from one site is on 
average younger than a sample from a second site, this 
may be because the underlying population is indeed 
younger. Alternatively, the difference could also result 
from a comparison of a relatively young convenience 
sample collected at one site with a full community sam-
ple at another site.

These scenarios are depicted in Figure 2. In this figure, 
an observed outcome Y is influenced by both unobserved 
cultural factors C and sample composition D. The sample 
composition is in turn influenced by the true demogra-
phy P and sampling procedures E (for “experimenter”).

If disparities arise from population differences (Fig. 
2a), we can directly compare samples as long as our goal 
is to simply describe population differences in the focal 
trait Y regardless of whether they arise from demography 
or from cultural factors. Adjustment is necessary, how-
ever, if we are interested in different comparisons. For 
example, we may be interested in the counterfactual (i.e., 
hypothetical) distribution of the trait under comparable 
demographic profiles: If the two sites had comparable 
age and gender distributions, would we still observe dif-
ferences in the trait of interest? This way, researchers 

Y

C

D

EP

S S

Y

C

D

EP

S S
a b

Fig. 2. Different sources of demographic disparities among study 
samples. Prosociality Y is caused by demography D and unobserved 
cultural factors C. The sample demography D is caused by popula-
tion demography P and sampling procedures E. Selection nodes S  
indicate mechanism by which populations differ. In addition to latent 
cultural factors, societies can differ in terms of (a) population demo-
graphy or (b) sampling procedures.
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could, for instance, isolate the influence of different cul-
tural factors C while holding constant demographic dis-
tributions. Note that such counterfactual comparisons 
might also correspond to a more substantive theoretical 
estimand (i.e., the distribution of a trait under a hypo-
thetical intervention that moved individuals to another 
population; Lundberg et al., 2021).

If disparities among sites arise from different sampling 
procedures E (Fig. 2b), even the purely descriptive ques-
tion of observable population differences requires demo-
graphic adjustment because sample demographics are 
systematically biased compared with the population of 
interest. For example, if the gender of the researcher 
influenced the gender of voluntary participants, then 
any differences between societies could be due to a mix 
of cultural, demographic, and sampling differences. In 
this case, even large samples do not accurately describe 
the target populations, and we need to poststratify using 
information about the population from which samples 
are taken.

Another scenario, not illustrated in Figure 2, is when 
a sample is selected on the outcome variable Y itself. For 
example, if prosocial individuals are more likely to coop-
erate with the researcher, this is selection on the out-
come. In this case, there may be no solution to generalize 
from sample to population and therefore no way to com-
pare populations. This is perhaps the starkest example 
of how description depends on causal assumptions.

We turn to real empirical data in the next subsection. 
However, knowing how to simulate data to validate an 
analytical strategy is also useful. For a walk-through on 
a complete simulated data example in which we know 
the true generative process, see Appendix B in the Sup-
plemental Material. We used multilevel regression with 
poststratification for the situation in which populations 
differ in their demographic profile (see Fig. S1, left, in 
the Supplemental Material) and the complementary situ-
ation in which demographic profiles of the populations 
are identical but genders are sampled unequally because 
of differences in local sampling procedures (see Fig. S1, 
right, in the Supplemental Material). In the first case, 
unadjusted empirical estimates accurately recover true 
population values, but poststratification can be used for 
counterfactual comparisons. In the second case, only 
poststratified estimates accurately recover true popula-
tion values.

Empirical example. We now turn to our empirical case 
study on prosociality across societies. Figure 3 shows a 
comparison between two actual populations included in 
House et al. (2020), Tanna island in Vanuatu (left) and 
Berlin in Germany (right). These societies have very differ-
ent demographic profiles and sample compositions. Here, 
we were immediately confronted with a pragmatic con-
cern: For many populations, no fine-grained demographic 

information is available. Therefore, we had to use the 
demography of all of Vanuatu instead of only Tanna. This 
highlights how collecting basic descriptive information 
about study populations is a crucial first step for any cross-
cultural inference.

We divided data into 20 age categories spanning 5 
years each and used Gaussian process multilevel regres-
sion with poststratification (for gender- and age-specific 
model estimates, see Appendix D, Fig. S4, in the Supple-
mental Material). For Tanna, poststratification to either 
the demographic profile of Vanuatu or of Berlin leaves 
estimates unchanged (Fig. 3, bottom). This is because 
there was only a weak effect of age in this sample and 
the gender distribution was balanced. For the Berlin 
sample, on the other hand, adjusting for the demo-
graphic population profile of Berlin substantially 
increased the expected amount of prosociality. This is 
because older individuals in Berlin tended to be more 
prosocial in their choices and House et al. (2020) focused 
their data collection on children, which resulted in a 
much younger sample compared with the underlying 
population. Drawing the counterfactual comparison for 
Berlin individuals under the demographic profile of 
Vanuatu slightly increased the estimate.

How does this compare with the standard approach 
in which researchers report raw age- and gender-specific 
estimates for each sample, thereby “controlling” for any 
differences? The parameter estimates are necessary, but 
they are not enough. First, the claim that conditioning 
on age and gender controls for sample differences 
depends on causal assumptions, as we explained in the 
previous sections. Second, the distribution of population 
differences depends not only on the parameters but also 
on the distributions of age and gender in each target 
population. A difference in parameters can look large 
but have little impact on population differences because 
both the relevant age-gender categories may be too rare 
to make a large difference and sizable differences on the 
parameter (e.g., logit) scale may result in minor differ-
ences on the outcome (e.g., probability) scale. Only by 
poststratifying to the outcome scale and to the relevant 
target population can behavioral differences be com-
pared (Oganisian & Roy, 2021; Rohrer & Arslan, 2021).

Although these examples have been simplified, they 
highlight the general concern. To accurately describe 
the prevalence of a trait and compare it across societies, 
we need to carefully define our theoretical estimand—
consisting of unit-specific quantity and target population—
and make assumptions about the processes that generate 
observed disparities in demography or any other poten-
tially significant variable. After a target population is set, 
refined statistical procedures, such as multilevel regression 
with poststratification, allow us to generalize observed 
outcomes to other populations conditional on causal 
assumptions.
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Generalizing experimental results: 
transportability of causal effects

Many hypotheses in cross-cultural research concern not 
only the prevalence of a certain trait across societies 

but also the causal effect of an independent variable 
(“exposure,” “treatment”) on a dependent variable (“out-
come”). In our example, we were interested in the 
causal effect of experimental norm primes on prosocial 
choices in the dictator game (House et al., 2020). Using 
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the transportability framework from causal inference 
(Pearl, 2015; Pearl & Bareinboim, 2014), we show how 
causal thinking can be leveraged to generalize and com-
pare causal effects across populations (for formal 
“S-admissibility” criterion, see Appendix C in the Sup-
plemental Material).

Figure 4 shows selection diagrams for different scenarios 
varying in terms of scope and procedures for generaliza-
tions. They encode different sets of assumptions about the 
local mechanisms that cause populations to differ. We con-
sider a situation in which normative social information X 
and age A jointly cause choice in dictator game Y. Note 
these DAGs represent the “pretreatment” situation, which 
means X has not yet been experimentally set to a particular 
value. After X is manipulated through norm-prime videos, 
all arrows entering X (i.e., all “backdoor” paths) are deleted 
because the experimentalist is now the sole cause of X. 
This allows us to estimate the causal effect from observed 
group differences. An experiment is necessary because we 
assume unobserved confounds—represented by dashed 
arrows—that influence both normative social information 
and prosocial choices (e.g., societies that strongly empha-
size prosociality may be structured such that normative 
information is salient but also encourage prosociality 
through other means).

Differences in independent/treatment variable. In 
Figure 4a, populations differ in the distribution of norma-
tive social information X. This could mean, for instance, 
that in some societies, individuals frequently encounter 
cultural narratives highlighting the importance of proso-
ciality in their everyday life. As we have just shown, treat-
ment randomization used in the experimental study 
cancels out such differences. As a consequence, the causal 
effect X Y→  is directly transportable or generalizable to 
other populations. In general, all selection nodes pointing 
into the independent variable (or other arrows that are 
removed in the X-manipulated graph) can be ignored 
(Pearl & Bareinboim, 2014).

Differences in effect modifiers. The scenario depicted 
in Figure 4b is more interesting. Here, we assume popula-
tion differences in age. Because age modifies (or “moder-
ates”) the effect of normative information on choices (i.e., 
the effect of norm primes is assumed to be different for 
different ages) and the age distribution varies across pop-
ulations, we cannot simply generalize the observed causal 
effect from one population to another. However, if age  
is assumed to affect the influence of norm primes in the 
same way across populations, we can estimate the age-
specific effect of X on Y from experimental data and 
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Fig. 4. Scenarios for transportability of causal effects across populations. (a) Normative social informa-
tion X, which is assumed to differ among populations, causes choice in dictator game Y; age A modifies 
effect of X on Y but is invariant across populations; there are also unmeasured confounds between 
X and Y (indicated by dashed line). (b) Effect-modifier A varies among populations. (c) Age itself 
is unobserved, but we get to measure reported age R as a proxy. It is assumed that the way people 
report their ages varies across societies but the underlying age distribution is the same. (d) Ages are 
reported in the same way across populations, but there are population differences in age distribution. 
(e) Response in mediator variable, norm activation N, varies across societies. (f) Populations vary in 
response of outcome variable Y to treatment X. Note that scenarios c, d, and e are described in detail 
in Appendix C in the Supplemental Material available online.
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generalize by adjusting for the age distribution of the tar-
get population.

The transport approach not only allows principled 
claims about the generalization of causal effects to new 
populations, it can also be employed to compare esti-
mates from multiple populations from which experimen-
tal data are available. To determine whether observed 
group differences in causal effects reflect “real” cultural 
differences (i.e., differences we cannot, yet, explain 
through other variables) or are due to sampling variation 
or differences in known effect modifiers, researchers 
need to make explicit assumptions about the causal pro-
cesses that generate the data.

Figure 5 shows a data example for the transport of 
age-specific causal effects across populations (House 
et al., 2020). Because of experimental manipulation, the 
causal effect of norm primes X on prosocial choices Y, 
our estimand, can be estimated from the difference in 
the probability to choose the prosocial option in both 
experimental conditions (“Generous” vs. “Selfish”). Dark 
colors show empirical estimates of this causal effect from 

six different societies included in House et al. (2020). 
Across all societies, posterior densities lay well above 0. 
This means that individuals who watched the “Generous” 
prime video were substantially more likely to choose 
the prosocial option in the dictator game compared with 
individuals who watched the “Selfish” prime video; the 
strongest effect was observed in the sample from Phoe-
nix, Arizona, United States.

To adjust for differences in the age distribution as a 
potential effect modifier, we estimated age-specific causal 
effects in each society and, as an example, adjusted esti-
mates to the demographic profile of the Wichí in Argentina. 
Transparent colors in Figure 5 show such counterfactual 
estimates for the effect of norm primes in each society 
assuming it had the same demographic composition as the 
sample from the Wichí. Although estimates remained 
largely unchanged for most societies, the effect for Phoenix 
became substantially smaller and more uncertain. This is 
because in Phoenix, age strongly modifies the effect of 
norm primes: Younger children were more influenced by 
norm primes than older children. The Phoenix sample is, 
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Fig. 5. Data example for transport of causal effects across societies. Empirical estimates (dark colors) and estimates transported to the Wichí 
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prosocial option in both conditions averaged over the age distribution in the target population.
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on average, almost 3 years younger than the Wichí sample, 
so estimates of the causal effect need to be adjusted to 
apply correctly to the Wichí demographic situation. On the 
basis of a comparison of naive empirical estimates, 
researchers might have wrongly concluded that norm 
primes have a particularly strong effect in Phoenix for some 
age-invariant cultural reason; transported estimates instead 
suggest that the larger effect is attributable to (potentially 
culturally determined) effect modification in combination 
with the younger sample. Adjustment for potential effect 
modifiers such as age, therefore, allows researchers to com-
pare causal effects on an equal footing.

To aid understanding, most examples have been rela-
tively straightforward, so some researchers might won-
der what they gain from this causal approach compared 
with more informal ways to standardize and compare 
estimates across groups. Building up from those funda-
mental units, in Appendix C in the Supplemental Mate-
rial, we describe more complicated situations in which 
implied generalizations and transport formulas could 
hardly be obtained by intuition alone.

In particular, Appendix C in the Supplemental Mate-
rial introduces scenarios in which we did not observe 
the true effect modifier, biological age, but only some 
proxy, such as reported age R, which is observed to vary 
across populations (Figs. 4c and 4d). Because different 
scenarios will generate identical data distributions, the 
correct procedure will depend solely on causal assump-
tions. In Appendix C in the Supplemental Material, we 
further discuss situations in which a mechanism mediat-
ing the effect of X on Y differs among societies (Fig. 4e), 
which requires a more sophisticated—yet algorithmically 
derivable—generalization formula.

“Impossibility” of generalizations. Finally, if a selec-
tion node is pointing directly into outcome variable Y (Fig. 
4f), no generalizations are possible because there is no 
immediate way to account for the source of disparity 
among populations (for “S-admissibility” criterion, see 
Appendix C in the Supplemental Material). This would be 
the case if unobserved population differences directly 
modify the effect (e.g., Oyserman & Lee, 2008, found that 
individualism-collectivism primes do not function in com-
parable ways across societies) or if the form of age modifi-
cation varies between sites. However, even such “impossible” 
cases might allow generalizations and comparisons if 
researchers make additional assumptions, for example, if 
we have additional knowledge about the mechanisms caus-
ing the outcome variable and if only some of these differ 
among populations (for an example analyzing effects of 
Vitamin A supplementation on childhood mortality, see 
Cinelli & Pearl, 2021).

These examples demonstrate that the generalizability 
of experimental effects does not depend on the presence 
of population differences per se but on the exact 

mechanisms by which populations differ. While some 
differences—especially those concerning the indepen-
dent variable—are inconsequential for intended gener-
alizations, differences concerning effect modifiers or 
mediators require statistical adjustment. Differences in 
the immediate mechanisms causing the outcome render 
generalizations difficult or even impossible. Such “real” 
cross-cultural differences may be the result of society-
level factors directly influencing the trait of interest, and 
they present irreducible obstacles to generalization. 
Whether “real” cultural differences exist or whether they 
must eventually be explained away by other mechanisms 
is a topic beyond the scope of this article.

Generalizing latent constructs: 
measurement equivalence or inequivalence

In all examples so far, we assumed that researchers can 
readily observe and measure the variables of interest. 
However, many (cross-cultural) psychologists are par-
ticularly interested in the comparison of latent con-
structs that are not directly observable. For example, 
researchers typically do not want to learn about dictator-
game choices per se but about the underlying psycho-
logical constructs (e.g., “prosociality”) that are assumed 
to generate the observed choices (for potential impacts 
of cultural context on economic game choices, see e.g., 
Bond et al., 1982; Lesorogol, 2007; Leung & Bond, 1984; 
Pisor et  al., 2020). In this section, we briefly demon-
strate how causal selection diagrams can be used to 
represent common issues of measurement equivalence 
or inequivalence in cross-cultural studies; note that this 
is just a sketch; doing justice to this issue would require 
a whole article.

Methodologists have long discussed whether and how 
data generated in cross-cultural research can be inter-
preted in terms of the presumed underlying processes 
and constructs. The “equivalence and bias” framework, 
for instance, differentiates between construct equiva-
lence, metric equivalence, and scalar equivalence (e.g., 
Van de Vijver & Leung, 2021; Van de Vijver & Tanzer, 
2004). Direct comparisons of measurements across soci-
eties are justified only if the underlying construct, mea-
surement units, and scale origin are equivalent across 
societies (i.e., full scalar equivalence).

But we can also approach the problem from a genera-
tive perspective. The measurement process can naturally 
be represented as a causal model of observed item or 
test scores (Bandalos, 2018; Borsboom et al., 2004). Note 
that there are alternative models in which constructs are 
not seen as common causes of manifest variables but as 
network structures (Borsboom et al., 2021) or organizing 
principles (Sijtsma, 2006) that connect such variables; 
however, the implications of such models for generaliz-
ability are beyond the scope of this article.
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For Figure 6a, we assume that an individual’s choice 
in the dictator game Y is caused by a latent psychologi-
cal factor P (for “Prosociality”) and unobserved sources 
of random “error” E. Measurement equivalence in this 
framework then requires that (a) only the distribution 
of the latent factor P might vary across communities, (b) 
P influences Y in the same way everywhere, and (c) 
there are also no population differences in the unob-
served error sources E. These conditions are fulfilled in 
Figure 6a, so in this case, we would be justified to com-
pare game choices as indicators of latent “prosociality” 
across communities.

In Figure 6b, choices in the dictator game do not only 
reflect prosociality and random error but also the degree 
of market integration M. People who engage more in mar-
ket activities might be more likely to give a reward to an 
anonymous peer simply because they are more used to 
interacting and trading with unknown others, not because 
they are more prosocial. In this case, choices in the dicta-
tor game are not equivalent measures of the latent factor 
in different societies because they also include the influ-
ence of market integration that varies across societies. 
Nonetheless, following the logic on generalizing descrip-
tion (see “Generalizing Description: Cross-Cultural Com-
parisons and Demographic Standardization” section), if 
we have data on market integration for each society, we 
can use poststratification to adjust for different levels of 
this variable and arrive at valid comparisons of prosociality 
and its causes across societies.

Finally, Figure 6c shows a scenario in which the selec-
tion node directly points into dictator-game choice Y. 
This comprises situations of construct inequivalence in 
which the latent construct itself is not comparable with 
respect to its influence on manifest behavior but also 
cases in which the influence of market integration or of 
unobserved error sources differs among societies. Mir-
roring the impossibility of transport with selection nodes 
pointing directly into outcome Y (see Fig. 4f), in any 

such case, generalizations and comparisons about latent 
factors are unwarranted (unless additional assumptions 
are made). Because there is no way to statistically 
account for different sources of variation of observed 
choices Y, we cannot identify the unique influence of 
the latent state P in equivalent ways across 
communities.

Using the Causal Framework  
for Principled Study Design

A causal framework is not only useful for analysis but 
also aids research design. To connect research designs 
to selection diagrams, we considered three stereotyped 
cases: a “maximally diverse” sampling strategy, a “proxy 
control” approach using phylogenetic distance or shared 
history, and a “regional comparative” approach that 
explicitly designs for local causal identification of the 
mechanisms by which populations differ. We explain 
each in turn.

A common approach in cross-cultural study design is 
to aim for maximally diverse populations. If effects can 
reliably be found across diverse societies, the reasoning 
goes, researchers are justified in assuming cross-cultural 
invariance or even universality; differences among sam-
ples are interpreted as evidence for either the influence 
of observed or unobserved cultural factors or method-
ological differences. By comparing geographically and 
culturally distant societies, this approach addresses 
“Galton’s problem,” which describes the pitfalls of draw-
ing inferences from cross-cultural data that are autocor-
related because of shared cultural and historical roots 
(Naroll, 1965). This rationale guided the construction of 
the widely used “Standard Cross-Cultural Sample” 
(Murdock & White, 1969). Figure 7a encodes a scenario 
in which researchers lack substantive theory on the fac-
tors causing a trait Y that varies cross-culturally. Thus, 
only a selection node is pointing into Y. Because there 
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Fig. 6. Causal representation of measurement equivalence or inequivalence across societies. (a) Choice 
in dictator game Y is caused by latent psychological factor Prosociality P, which varies across popula-
tions, and unobserved sources of random error E. (b) Choice in dictator game Y is also influenced by 
(population-specific) degree of market integration M. (c) The influence of prosociality P, error E, or 
market integration M on observed choices differs among societies.
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is no way to separate sources of population differences 
from the trait itself, there are no theoretical grounds to 
predict how the trait might vary across populations. In 
such exploratory scenarios, it is advisable to sample 
many culturally distinct societies to approach a repre-
sentative sample of the full range of variation (for 
description of cultural variation, see “Generalizing 
Description: Cross-Cultural Comparisons and Demo-
graphic Standardization” section). In general, when there 
is a selection node pointing directly into the outcome 
variable, researchers must incorporate relatively diverse 
populations because there are relevant but unknown 
variables causing population differences. However, 
potential dimensions of variation across settings, indi-
viduals, and societies are effectively infinite. They can 
never be sampled exhaustively, which reflects the classic 
problem of induction (Hume, 1739/2003; Sloman & 
Lagnado, 2005). In addition, although this approach 
reduces the chance that cross-cultural similarity is due to 
recent shared influences, it is not a general solution to 
causal inference because any similarity between distant 
societies could still be due to unobserved variables.

A generalizable understanding of a given phenome-
non, therefore, cannot be based only on the accumula-
tion of data but requires the theory-driven testing of 
causal assumptions. How even the most rudimentary 
causal theory helps increase generalizability can be seen 
in Figure 7b, in which researchers have identified an 
explanatory variable X. If researchers can find an iden-
tification strategy to estimate the causal effect X Y→ , 
they can leverage this causal knowledge to enhance 
generalizability following the transport approach out-
lined in “Generalizing Experimental Results: Transport-
ability of Causal Effects” section. The problem is that 
unobserved cultural variables C, which differ between 
populations, influence both X and Y and thus confound 
the causal effect. One approach is to try to model the 
covariation among populations that arises from such 
unobserved confounds. Variables such as geographic, 
linguistic, or cultural distance P can be used as proxies 

to control for unmeasured common causes of similarity. 
The notion is that populations closer in space or cultural 
history share more unmeasured common causes. This 
can permit causal investigation of, for example, ecologi-
cal and demographic factors in otherwise opportunistic 
collections of societies. Various cultural and linguistic 
phylogenetic methods try to implement this strategy (for 
detailed examples, see McElreath, 2020, Section 14.5). 
This approach makes strong causal assumptions about 
the nature of confounding and our ability to measure 
shared history. However, strong assumptions are always 
necessary in observational settings. What is important is 
that the assumptions are transparent and logically con-
nected to data analysis.

Finally, Figure 7c shows a scenario in which research-
ers have developed more mechanistic theory including 
additional variables lying on the causal paths between 
selection nodes and outcome; this provides more prin-
cipled expectations about the mechanisms generating 
population disparities. Specifically, there is an intermedi-
ate variable Z mediating the effect of X on Y and another 
variable W that modifies the effect of Z on Y. If this DAG 
is assumed, there is no selection node pointing into Y 
anymore, and thus researchers can explain all population 
differences in the focal trait on the basis of the joint causal 
effects of other variables. A research design that attempts 
to address causation directly is the “regional comparative” 
approach. In this approach, researchers explicitly target 
closely related societies that differ only in key variables 
of interest (Boas, 1896; Johnson, 1991). By holding other 
factors constant, such “quasi-experimental” comparisons 
among regional populations or subpopulations allow 
researchers to isolate the effect of a variable of interest 
and facilitate causal inference. This strategy is similar to 
difference-in-difference (Lechner, 2011) and regression-
discontinuity designs (Imbens & Lemieux, 2008; Lee & 
Lemieux, 2010). A classic example of the approach is the 
Culture and Ecology in East Africa Project that compared 
samples from four different ethnic groups, each of which 
comprised neighboring pastoralist and horticulturalist 
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Fig. 7. Different causal scenarios for study design. (a) Unobserved factors cause cross-cultural 
variation in outcome variable Y. (b) X is a cause of Y, and unobserved cultural variables C that 
differ between populations influence both X and Y; phylogenetic relationships P influence C. 
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communities in different but adjacent ecologies (Edgerton, 
1971; Goldschmidt, 1965). Although differences among 
ethnic groups are hard to interpret, differences between 
neighboring communities in each ethnic group are argu-
ably due to local ecological and economic differences 
(for more recent examples, see Glowacki & Molleman, 
2017; Mattison et al., 2016).

To summarize, because of the problem of induction, 
generalizability can never be determined through the 
accumulation of cross-cultural data alone and requires 
the development of formal theory to accompany and 
guide cross-cultural data collection (Muthukrishna & 
Henrich, 2019). The maximally informative research 
design depends on the state of mechanistic understand-
ing of the phenomenon of interest. By explicitly stating 
and refining the causal assumptions underlying popula-
tion differences, researchers can target maximally infor-
mative cross-cultural comparisons and generate results 
that are not only grounded in theory but also generaliz-
able beyond the immediate study samples.

Conclusions

More diverse samples are urgently needed, but they 
bring forth new conceptual challenges for description, 
generalization, and comparison. The accumulation of 
large cross-cultural data sets in combination with lists 
of threats to validity allows only limited progress. What 
is needed in addition is a structural-causal-modeling 
framework. An explicit causal framework empowers 
researchers by providing a way to plan cross-cultural 
comparisons, implement and justify analyses, and deter-
mine which interpretations are warranted under which 
sets of assumptions. It also provides a powerful way to 
critically and fairly evaluate the studies of others and to 
formally represent sources of disagreement. An effective 
critique should aim for the same causal clarity as an 
effective study. When an original study lacks causal clar-
ity, an effective critique may identify which causal model 
is implied by the analysis and subsequently assess the 
plausibility of specific elements.

Researchers in various fields already apply methods 
that address some of the concerns we discussed above. 
For example, political scientists and sociologists apply 
demographic standardization (e.g., Kitagawa decomposi-
tion) to estimate effects of interventions for counterfac-
tual populations (Acharya et  al., 2016; Ciocca Eller & 
DiPrete, 2018; Kitagawa, 1955; Mize, 2016; Preston et al., 
2000; Ross et al., 2021; Storer et al., 2020). Anthropolo-
gists calculate age-corrected values to standardize across 
populations (Borgerhoff Mulder et al., 2009; Jaeggi et al., 
2021; Mattison et al., 2016; and Rowan et al., 2021). 
Economists calculate average treatment effects and mar-
ginal effects that can take into account effect modification 
by demographic variables (Asteriou & Hall, 2015; Athey 

& Imbens, 2016; Greene, 2000; Morgan & Winship, 2015), 
and the Heckman correction is applied to account for 
nonrandom sample selection (Heckman, 1976, 1979; 
Puhani, 2000). And even simple regression controls can 
account for population differences in background factors 
in some limited situations.

The framework we champion—poststratification and 
transport based on causal graphs—goes beyond these 
partial solutions. It is explicit about the target of inference 
and the assumptions that justify the analysis; it logically 
derives statistical procedures from a generative causal 
model. Therefore, it is more general and unifies a large 
number of inferential concerns (e.g., confounding, selec-
tion bias, standardization, generalization) in a common 
framework. Likewise, the estimation strategy that we 
propose—multilevel regression with poststratification—is 
very flexible. It allows to project estimates to arbitrary 
target populations and can account for any number of 
variables and functional relationships between them. In 
contrast, simply including age and gender as covariates 
in multiple regression assumes that all relationships are 
linear and estimates population differences holding 
covariates constant at an arbitrary level. Under the right 
circumstances, this standard approach might tell us some-
thing about differences between observed samples but 
does not enable us to generalize findings to the sample 
populations (in case of sampling differences) and other 
populations in a reasoned way.

It is quite obvious that all the scenarios we presented 
were oversimplified. An explicit causal-inference frame-
work makes it (at times painfully) transparent how 
strong the assumptions are that we need to arrive at 
substantive conclusions and how little we collectively 
know about many real-world phenomena. But this is no 
reason to embrace the status quo that often avoids causal 
language (Grosz et al., 2020)—assumptions do not dis-
appear just because we ignore them. Cross-cultural 
research is daunting, and strong conclusions require 
strong methods for data collection, its description, and 
its analysis. A structural causal framework encourages 
researchers to explicitly spell out their assumptions, 
removing verbal ambiguity and facilitating communica-
tion, and it calls for a cumulative approach to science 
as one study’s findings become the scaffolding assump-
tions of the next.
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