377 research outputs found

    The role of oxygen vacancies on the structure and the density of states of iron doped zirconia

    Full text link
    In this paper we study, both with theoretical and experimental approach, the effect of iron doping in zirconia. Combining density functional theory (DFT) simulations with the experimental characterization of thin films, we show that iron is in the Fe3+ oxidation state and accordingly that the films are rich in oxygen vacancies (VO). VO favor the formation of the tetragonal phase in doped zirconia (ZrO2:Fe) and affect the density of state at the Fermi level as well as the local magnetization of Fe atoms. We also show that the Fe(2p) and Fe(3p) energy levels can be used as a marker for the presence of vacancies in the doped system. In particular the computed position of the Fe(3p) peak is strongly sensitive to the VO to Fe atoms ratio. A comparison of the theoretical and experimental Fe(3p) peak position suggests that in our films this ratio is close to 0.5. Besides the interest in the material by itself, ZrO2:Fe constitutes a test case for the application of DFT on transition metals embedded in oxides. In ZrO2:Fe the inclusion of the Hubbard U correction significantly changes the electronic properties of the system. However the inclusion of this correction, at least for the value U = 3.3 eV chosen in the present work, worsen the agreement with the measured photo-emission valence band spectra.Comment: 24 pages, 8 figure

    Balanced superprojective varieties

    Get PDF
    We first review the definition of superprojective spaces from the functor-of-points perspective. We derive the relation between superprojective spaces and supercosets in the framework of the theory of sheaves. As an application of the geometry of superprojective spaces, we extend Donaldson\u2019s definition of balanced manifolds to supermanifolds and we derive the new conditions of a balanced supermanifold. We apply the construction to superpoints viewed as submanifolds of superprojective spaces. We conclude with a list of open issues and interesting problems that can be addressed in the present context

    Cech and de Rham Cohomology of Integral Forms

    Full text link
    We present a study on the integral forms and their Cech/de Rham cohomology. We analyze the problem from a general perspective of sheaf theory and we explore examples in superprojective manifolds. Integral forms are fundamental in the theory of integration in supermanifolds. One can define the integral forms introducing a new sheaf containing, among other objects, the new basic forms delta(dtheta) where the symbol delta has the usual formal properties of Dirac's delta distribution and acts on functions and forms as a Dirac measure. They satisfy in addition some new relations on the sheaf. It turns out that the enlarged sheaf of integral and "ordinary" superforms contains also forms of "negative degree" and, moreover, due to the additional relations introduced, its cohomology is, in a non trivial way, different from the usual superform cohomology.Comment: 20 pages, LaTeX, we expanded the introduction, we add a complete analysis of the cohomology and we derive a new duality between cohomology group

    Stabilization of tetragonal/cubic phase in Fe doped Zirconia grown by atomic layer deposition

    Full text link
    Achieving high temperature ferromagnetism by doping transition metals thin films is seen as a viable approach to integrate spin-based elements in innovative spintronic devices. In this work we investigated the effect of Fe doping on structural properties of ZrO2 grown by atomic layer deposition (ALD) using Zr(TMHD)4 for Zr and Fe(TMHD)3 for Fe precursors and ozone as oxygen source. The temperature during the growth process was fixed at 350{\deg}C. The ALD process was tuned to obtain Fe doped ZrO2 films with uniform chemical composition, as seen by time of flight secondary ion mass spectrometry. The control of Fe content was effectively reached, by controlling the ALD precursor pulse ratio, as checked by X-ray photoemission spectroscopy (XPS) and spectroscopic ellipsometry. From XPS, Fe was found in Fe3+ chemical state, which maximizes the magnetization per atom. We also found, by grazing incidence X-ray diffraction, that the inclusion of Fe impurities in ZrO2 induces amorphization in thin ZrO2 films, while stabilizes the high temperature crystalline tetragonal/cubic phase after rapid thermal annealing at 600{\deg}C.Comment: 11 pages, 7 figures, 1 Tabl

    Measurement of the temperature of an ultracold ion source using time-dependent electric fields

    Get PDF
    We report on a measurement of the characteristic temperature of an ultracold rubidium ion source, in which a cloud of laser-cooled atoms is converted to ions by photo-ionization. Extracted ion pulses are focused on a detector with a pulsed-field technique. The resulting experimental spot sizes are compared to particle-tracking simulations, from which a source temperature T=(1±2)T = (1 \pm 2) mK and the corresponding transversal reduced emittance ϵr=7.9X10−9\epsilon_r = 7.9 X 10^{-9} m rad eV\sqrt{\rm{eV}} are determined. We find that this result is likely limited by space charge forces even though the average number of ions per bunch is 0.022.Comment: 8 pages, 11 figure

    Ultrafast dynamics of coherent optical phonons and nonequilibrium electrons in transition metals

    Get PDF
    The femtosecond optical pump-probe technique was used to study dynamics of photoexcited electrons and coherent optical phonons in transition metals Zn and Cd as a function of temperature and excitation level. The optical response in time domain is well fitted by linear combination of a damped harmonic oscillation because of excitation of coherent E2gE_{2g} phonon and a subpicosecond transient response due to electron-phonon thermalization. The electron-phonon thermalization time monotonically increases with temperature, consistent with the thermomodulation scenario, where at high temperatures the system can be well explained by the two-temperature model, while below ≈\approx 50 K the nonthermal electron model needs to be applied. As the lattice temperature increases, the damping of the coherent E2gE_{2g} phonon increases, while the amplitudes of both fast electronic response and the coherent E2gE_{2g} phonon decrease. The temperature dependence of the damping of the E2gE_{2g} phonon indicates that population decay of the coherent optical phonon due to anharmonic phonon-phonon coupling dominates the decay process. We present a model that accounts for the observed temperature dependence of the amplitude assuming the photoinduced absorption mechanism, where the signal amplitude is proportional to the photoinduced change in the quasiparticle density. The result that the amplitude of the E2gE_{2g} phonon follows the temperature dependence of the amplitude of the fast electronic transient indicates that under the resonant condition both electronic and phononic responses are proportional to the change in the dielectric function.Comment: 10 pages, 9 figures, to appear in Physical Review

    Anharmonic Decay of Vibrational States in Amorphous Silicon

    Full text link
    Anharmonic decay rates are calculated for a realistic atomic model of amorphous silicon. The results show that the vibrational states decay on picosecond timescales and follow the two-mode density of states, similar to crystalline silicon, but somewhat faster. Surprisingly little change occurs for localized states. These results disagree with a recent experiment.Comment: 10 pages, 4 Postscript figure
    • …
    corecore