7,414 research outputs found

    Nonlinear envelope equation for broadband optical pulses in quadratic media

    Get PDF
    We derive a nonlinear envelope equation to describe the propagation of broadband optical pulses in second order nonlinear materials. The equation is first order in the propagation coordinate and is valid for arbitrarily wide pulse bandwidth. Our approach goes beyond the usual coupled wave description of χ(2)\chi^{(2)} phenomena and provides an accurate modelling of the evolution of ultra-broadband pulses also when the separation into different coupled frequency components is not possible or not profitable

    A Heuristic Strategy to Compute Ensemble of Trajectories for 3D Low Cost Earth-Moon Transfers

    Get PDF
    The problem of finding optimal trajectories is essential for modern space mission design. When considering multibody gravitational dynamics and exploiting both low-thrust and high-thrust and alternative forms of propulsion such as solar sailing, sets of good initial guesses are fundamental for the convergence to local or global optimal solutions, using both direct or indirect methods available to solve the optimal control problem. This paper deals with obtaining preliminary trajectories that are designed to be good initial guesses as input to search optimal low-energy short-time Earth-Moon transfers with ballistic capture. A more realistic modelling is introduced, in which the restricted four-body system Sun-Earth-Moon-Spacecraft is decoupled in two patched planar Circular Restricted Three-Body Problems, taking into account the inclination of the orbital plane of the Moon with respect to the ecliptic. We present a heuristic strategy based on the hyperbolic invariant manifolds of the Lyapunov orbits around the Lagrangian points of the Earth- Moon system to obtain ballistic capture orbits around the Moon that fulfill specific mission requirements. Moreover, quasi-periodic orbits of the Sun-Earth system are exploited using a genetic algorithm to find optimal solutions with respect to total Dv, time of flight and altitude at departure. Finally, the procedure is illustrated and the full transfer trajectories assessed in view of relevant properties. The proposed methodology provides sets of low-cost and shorttime initial guesses to serve as inputs to compute fully optimized three-dimensional solutions considering different propulsion technologies, such as low, high, and hybrid thrust, and/or using more realistic models

    Future weak lensing constraints in a dark coupled universe

    Get PDF
    Coupled cosmologies can predict values for the cosmological parameters at low redshifts which may differ substantially from the parameters values within non-interacting cosmologies. Therefore, low redshift probes, as the growth of structure and the dark matter distribution via galaxy and weak lensing surveys constitute a unique tool to constrain interacting dark sector models. We focus here on weak lensing forecasts from future Euclid and LSST-like surveys combined with the ongoing Planck cosmic microwave background experiment. We find that these future data could constrain the dimensionless coupling to be smaller than a few ×102\times 10^{-2}. The coupling parameter ξ\xi is strongly degenerate with the cold dark matter energy density Ωch2\Omega_{c}h^2 and the Hubble constant H0H_0.These degeneracies may cause important biases in the cosmological parameter values if in the universe there exists an interaction among the dark matter and dark energy sectors.Comment: 8 pages, 6 figure

    Constraining Modified Gravity with Euclid

    Get PDF
    Future proposed satellite missions as Euclid can offer the opportunity to test general relativity on cosmic scales through mapping of the galaxy weak lensing signal. In this paper we forecast the ability of these experiments to constrain modified gravity scenarios as those predicted by scalar-tensor and f(R)f(R) theories. We found that Euclid will improve constraints expected from the PLANCK satellite on these modified gravity models by two orders of magnitude. We discuss parameter degeneracies and the possible biases introduced by modified gravity

    Irreversible thermodynamics of open chemical networks I: Emergent cycles and broken conservation laws

    Get PDF
    In this and a companion paper we outline a general framework for the thermodynamic description of open chemical reaction networks, with special regard to metabolic networks regulating cellular physiology and biochemical functions. We first introduce closed networks "in a box", whose thermodynamics is subjected to strict physical constraints: the mass-action law, elementarity of processes, and detailed balance. We further digress on the role of solvents and on the seemingly unacknowledged property of network independence of free energy landscapes. We then open the system by assuming that the concentrations of certain substrate species (the chemostats) are fixed, whether because promptly regulated by the environment via contact with reservoirs, or because nearly constant in a time window. As a result, the system is driven out of equilibrium. A rich algebraic and topological structure ensues in the network of internal species: Emergent irreversible cycles are associated to nonvanishing affinities, whose symmetries are dictated by the breakage of conservation laws. These central results are resumed in the relation a+b=sYa + b = s^Y between the number of fundamental affinities aa, that of broken conservation laws bb and the number of chemostats sYs^Y. We decompose the steady state entropy production rate in terms of fundamental fluxes and affinities in the spirit of Schnakenberg's theory of network thermodynamics, paving the way for the forthcoming treatment of the linear regime, of efficiency and tight coupling, of free energy transduction and of thermodynamic constraints for network reconstruction.Comment: 18 page

    Liquid-vapor interface of a polydisperse fluid

    Full text link
    We report a Grand Canonical Monte Carlo simulation study of the liquid-vapor interface of a model fluid exhibiting polydispersity in terms of the particle size σ\sigma. The bulk density distribution, ρ0(σ)\rho^0(\sigma), of the system is controlled by the imposed chemical potential distribution μ(σ)\mu(\sigma). We choose the latter such that ρ0(σ)\rho^0(\sigma) assumes a Schulz form with associated degree of polydispersity 14\approx 14%. By introducing a smooth attractive wall, a planar liquid-vapor interface is formed for bulk state points within the region of liquid-vapor coexistence. Owing to fractionation, the pure liquid phase is enriched in large particles, with respect to the coexisting vapor. We investigate how the spatial non-uniformity of the density near the liquid-vapor interface affects the evolution of the local distribution of particle sizes between the limiting pure phase forms. We find (as previously predicted by density functional theory, Bellier-Castella {\em et al}, Phys. Rev. {\bf E65}, 021503 (2002)) a segregation of smaller particles to the interface. The magnitude of this effect is quantified for various σ\sigma via measurements of the relative adsorption. Additionally, we consider the utility of various estimators for the interfacial width and highlight the difficulties of isolating the intrinsic contribution of polydispersity to this width.Comment: 9 pages, 10 Fig

    Magnetism in nanometer-thick magnetite

    Get PDF
    The oldest known magnetic material, magnetite, is of current interest for use in spintronics as a thin film. An open question is how thin can magnetite films be and still retain the robust ferrimagnetism required for many applications. We have grown one-nanometer-thick magnetite crystals and characterized them in situ by electron and photoelectron microscopies including selected-area x-ray circular dichroism. Well-defined magnetic patterns are observed in individual nano-crystals up to at least 520 K, establishing the retention of ferrimagnetism in magnetite two-unit-cells thick.Comment: 5 pages, 4 figure

    Financial instability from local market measures

    Full text link
    We study the emergence of instabilities in a stylized model of a financial market, when different market actors calculate prices according to different (local) market measures. We derive typical properties for ensembles of large random markets using techniques borrowed from statistical mechanics of disordered systems. We show that, depending on the number of financial instruments available and on the heterogeneity of local measures, the market moves from an arbitrage-free phase to an unstable one, where the complexity of the market - as measured by the diversity of financial instruments - increases, and arbitrage opportunities arise. A sharp transition separates the two phases. Focusing on two different classes of local measures inspired by real markets strategies, we are able to analytically compute the critical lines, corroborating our findings with numerical simulations.Comment: 17 pages, 4 figure

    Enhanced magnetic moment and conductive behavior in NiFe2O4 spinel ultrathin films

    Full text link
    Bulk NiFe2O4 is an insulating ferrimagnet. Here, we report on the epitaxial growth of spinel NiFe2O4 ultrathin films onto SrTiO3 single-crystals. We will show that - under appropriate growth conditions - epitaxial stabilization leads to the formation of a spinel phase with magnetic and electrical properties that radically differ from those of the bulk material : an enhanced magnetic moment (Ms) - about 250% larger - and a metallic character. A systematic study of the thickness dependence of Ms allows to conclude that its enhanced value is due to an anomalous distribution of the Fe and Ni cations among the A and B sites of the spinel structure resulting from the off-equilibrium growth conditions and to interface effects. The relevance of these findings for spinel- and, more generally, oxide-based heterostructures is discussed. We will argue that this novel material could be an alternative ferromagetic-metallic electrode in magnetic tunnel junctions.Comment: accepted for publication in Phys. Rev.
    corecore