20,015 research outputs found
Technical innovation changes standard radiographic protocols in veterinary medicine: is it necessary to obtain two dorsoproximal-palmarodistal oblique views of the equine foot when using computerised radiography systems?
Since the 1950s, veterinary practitioners have included two separate dorsoproximal–palmarodistal oblique (DPr–PaDiO) radiographs as part of a standard series of the equine foot. One image is obtained to visualise the distal phalanx and the other to visualise the navicular bone. However, rapid development of computed radiography and digital radiography and their post-processing capabilities could mean that this practice is no longer required. The aim of this study was to determine differences in perceived image quality between DPr–PaDiO radiographs that were acquired with a computerised radiography system with exposures, centring and collimation recommended for the navicular bone versus images acquired for the distal phalanx but were subsequently manipulated post-acquisition to highlight the navicular bone. Thirty images were presented to four clinicians for quality assessment and graded using a 1–3 scale (1=textbook quality, 2=diagnostic quality, 3=non-diagnostic image). No significant difference in diagnostic quality was found between the original navicular bone images and the manipulated distal phalanx images. This finding suggests that a single DPr–PaDiO image of the distal phalanx is sufficient for an equine foot radiographic series, with appropriate post-processing and manipulation. This change in protocol will result in reduced radiographic study time and decreased patient/personnel radiation exposure
The Impact of Community Based Adventure Therapy on Stress and Coping Skills in Adults.
Stress and coping skills are among the most essential components of the mental health counseling field. The use of coping skills (e.g., meditation, physical activities, appropriate uses of leisure) has been identified as an effective strategy for stress management. Adventure therapy has emerged as a modality that can positively augment other therapeutic approaches by improving coping skills and assisting clients in managing stress. As with all therapies, a positive working alliance has been found to be important toward achieving clinical outcomes. This study explored how adventure therapy enhanced learned coping strategies for stress and improved therapeutic alliance. Outcomes from this exploratory research highlighted the potential of adventure therapy to decrease stress, increase coping skills, and build therapeutic rapport with the therapist
The Electrodynamics of Inhomogeneous Rotating Media and the Abraham and Minkowski Tensors II: Applications
Applications of the covariant theory of drive-forms are considered for a
class of perfectly insulating media. The distinction between the notions of
"classical photons" in homogeneous bounded and unbounded stationary media and
in stationary unbounded magneto-electric media is pointed out in the context of
the Abraham, Minkowski and symmetrized Minkowski electromagnetic
stress-energy-momentum tensors. Such notions have led to intense debate about
the role of these (and other) tensors in describing electromagnetic
interactions in moving media. In order to address some of these issues for
material subject to the Minkowski constitutive relations, the propagation of
harmonic waves through homogeneous and inhomogeneous, isotropic plane-faced
slabs at rest is first considered. To motivate the subsequent analysis on
accelerating media two classes of electromagnetic modes that solve Maxwell's
equations for uniformly rotating homogeneous polarizable media are enumerated.
Finally it is shown that, under the influence of an incident monochromatic,
circularly polarized, plane electromagnetic wave, the Abraham and symmetrized
Minkowski tensors induce different time-averaged torques on a uniformly
rotating materially inhomogeneous dielectric cylinder. We suggest that this
observation may offer new avenues to explore experimentally the covariant
electrodynamics of more general accelerating media.Comment: 29 pages, 4 figures. Accepted for publication in Proc. Roy. Soc.
Cautionary tales for reduced-gravity particle research
Failure of experiments conducted on the KC-135 aircraft in zero gravity are discussed. Tests that were a total failure are reported. Why the failure occurred and the sort of questions that potential researchers should ask in order to avoid the appearance of abstracts such as this are discussed. Many types of aggregation studies were proposed for the Space Station, and it is hoped that the following synopsis of events will add a touch of reality to experimentation proposed for this zero-gravity environment
The Environment of ``E+A'' Galaxies
The violent star formation history of ``E+A'' galaxies and their detection
almost exclusively in distant clusters is frequently used to link them to the
``Butcher-Oemler effect'' and to argue that cluster environment influences
galaxy evolution. From 11113 spectra in the Las Campanas Redshift Survey, we
have obtained a unique sample of 21 nearby ``E+A" galaxies. Surprisingly, a
large fraction (about 75%) of these ``E+A''s lie in the field. Therefore,
interactions with the cluster environment, in the form of the ICM or cluster
potential, are not essential for ``E+A'' formation. If one mechanism is
responsible for ``E+A''s, their existence in the field and the tidal features
in at least 5 of the 21 argue that galaxy-galaxy interactions and mergers are
that mechanism. The most likely environments for such interactions are poor
groups, which have lower velocity dispersions than clusters and higher galaxy
densities than the field. In hierarchical models, groups fall into clusters in
greater numbers at intermediate redshifts than they do today. Thus, the
Butcher-Oemler effect may reflect the typical evolution of galaxies in groups
and in the field rather than the influence of clusters on star formation in
galaxies. This abstract is abridged.Comment: 39 uuencoded, compressed pages (except Fig 1), complete preprint at
ftp://ociw.edu/pub/aiz/eplusa.ps, ApJ, submitte
Isomorphism between Non-Riemannian gravity and Einstein-Proca-Weyl theories extended to a class of Scalar gravity theories
We extend the recently proved relation between certain models of
Non-Riemannian gravitation and Einstein- Proca-Weyl theories to a class of
Scalar gravity theories. This is used to present a Black-Hole Dilaton solution
with non-Riemannian connection.Comment: 13 pages, tex file, accepted in Class. Quant. Gra
Non-Riemannian Gravity and the Einstein-Proca System
We argue that all Einstein-Maxwell or Einstein-Proca solutions to general
relativity may be used to construct a large class of solutions (involving
torsion and non-metricity) to theories of non-Riemannian gravitation that have
been recently discussed in the literature.Comment: 9 pages Plain Tex (No Figures), Letter to Editor Classical and
Quantum Gravit
Aeolian abrasion on Venus: Preliminary results from the Venus simulator
The role of atmospheric pressure on aeolian abrasion was examined in the Venus Simulator with a constant temperature of 737 K. Both the rock target and the impactor were fine-grained basalt. The impactor was a 3 mm diameter angular particle chosen to represent a size of material that is entrainable by the dense Venusian atmosphere and potentially abrasive by virtue of its mass. It was projected at the target 10 to the 5 power times at a velocity of 0.7 m/s. The impactor showed a weight loss of approximately 1.2 x 10 to the -9 power gm per impact with the attrition occurring only at the edges. Results from scanning electron microscope analysis, profilometry, and weight measurement are summarized. It is concluded that particles can incur abrasion at Venusian temperatures even with low impact velocities expected for Venus
Physical Bias of Galaxies From Large-Scale Hydrodynamic Simulations
We analyze a new large-scale (Mpc) numerical hydrodynamic
simulation of the popular CDM cosmological model, including in our
treatment dark matter, gas and star-formation, on the basis of standard
physical processes. The method, applied with a numerical resolution of
kpc (which is still quite coarse for following individual galaxies,
especially in dense regions), attempts to estimate where and when galaxies
form. We then compare the smoothed galaxy distribution with the smoothed mass
distribution to determine the "bias" defined as on scales large compared with the code
numerical resolution (on the basis of resolution tests given in the appendix of
this paper). We find that (holding all variables constant except the quoted
one) bias increases with decreasing scale, with increasing galactic age or
metallicity and with increasing redshift of observations. At the Mpc
fiducial comoving scale bias (for bright regions) is 1.35 at reaching to
3.6 at , both numbers being consistent with extant observations. We also
find that Mpc voids in the distribution of luminous objects are
as observed (i.e., observed voids are not an argument against CDM-like models)
and finally that the younger systems should show a colder Hubble flow than do
the early type galaxies (a testable proposition). Surprisingly, little
evolution is found in the amplitude of the smoothed galaxy-galaxy correlation
function (as a function of {\it comoving} separation). Testing this prediction
vs observations will allow a comparison between this work and that of Kauffmann
et al which is based on a different physical modelingmethod.Comment: in press, ApJ, 26 latex pages plus 7 fig
- …
