60,876 research outputs found
Web 2.0 and micro-businesses: An exploratory investigation
This is the author's final version of the article. This article is (c) Emerald Group Publishing and permission has been granted for this version to appear here. Emerald does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from Emerald Group Publishing Limited.This article was chosen as a Highly Commended Award Winner at the Emerald Literati Network Awards for Excellence 2013.Purpose – The paper aims to report on an exploratory study into how small businesses use Web 2.0 information and communication technologies (ICT) to work collaboratively with other small businesses. The study had two aims: to investigate the benefits available from the use of Web 2.0 in small business collaborations, and to characterize the different types of such online collaborations.
Design/methodology/approach – The research uses a qualitative case study methodology based on semi-structured interviews with the owner-managers of 12 UK-based small companies in the business services sector who are early adopters of Web 2.0 technologies.
Findings – Benefits from the use of Web 2.0 are categorized as lifestyle benefits, internal operational efficiency, enhanced capability, external communications and enhanced service offerings. A 2×2 framework is developed to categorize small business collaborations using the dimensions of the basis for inter-organizational collaboration (control vs cooperation) and the level of Web 2.0 ICT use (simple vs sophisticated).
Research limitations/implications – A small number of firms of similar size, sector and location were studied, which limits generalizability. Nonetheless, the results offer a pointer to the likely future use of Web 2.0 tools by other small businesses.
Practical implications – The research provides evidence of the attraction and potential of Web 2.0 for collaborations between small businesses.
Originality/value – The paper is one of the first to report on use of Web 2.0 ICT in collaborative working between small businesses. It will be of interest to those seeking a better understanding of the potential of Web 2.0 in the small business community.WestFocu
Effluent sampling of Scout D and Delta launch vehicle exhausts
Characterization of engine-exhaust effluents (hydrogen chloride, aluminum oxide, carbon dioxide, and carbon monoxide) has been attempted by conducting field experiments monitoring the exhaust cloud from a Scout-Algol III vehicle launch and a Delta-Thor vehicle launch. The exhaust cloud particulate size number distribution (total number of particles as a function of particle diameter), mass loading, morphology, and elemental composition have been determined within limitations. The gaseous species in the exhaust cloud have been identified. In addition to the ground-based measurements, instrumented aircraft flights through the low-altitude, stabilized-exhaust cloud provided measurements which identified CO and HCI gases and Al2O3 particles. Measurements of the initial exhaust cloud during formation and downwind at several distances have established sampling techniques which will be used for experimental verification of model predictions of effluent dispersion and fallout from exhaust clouds
Deep ROSAT-HRI observations of the NGC 1399/NGC 1404 region: morphology and structure of the X-ray halo
We present the analysis of a deep (167 ks) ROSAT HRI observation of the cD
galaxy NGC 1399 in the Fornax cluster. Using both HRI and, at larger radii,
archival PSPC data, we find that the radial behavior of the X-ray surface
brightness profile is not consistent with a simple Beta model and suggests
instead three distinct components. We use a multi-component bidimensional model
to study in detail these three components that we identify respectively with
the cooling flow region, the galactic and the cluster halo. From these data we
derive a binding mass distribution in agreement with that suggested by optical
dynamical indicators, with an inner core dominated by luminous matter and an
extended dark halo differently distributed on galactic and cluster scales. The
HRI data and a preliminary analysis of Chandra public data, allow us to detect
significant density fluctuations in the halo. We discuss possible
non-equilibrium scenarios to explain the hot halo structure, including tidal
interactions with neighboring galaxies, ram stripping from the intra-cluster
medium and merging events. In the innermost region of NGC 1399, the comparison
between the X-ray and radio emission suggests that the radio emitting plasma is
displacing and producing shocks in the hot X-ray emitting gas. We found that
the NGC 1404 halo is well represented by a single symmetric Beta model and
follows the stellar light profile within the inner 8 kpc. The mass distribution
is similar to the `central' component of the NGC 1399 halo. At larger radii ram
pressure stripping from the intra-cluster medium produces strong asymmetries in
the gas distribution. Finally we discuss the properties of the point source
population finding evidence of correlation between the source excess and NGC
1399.Comment: 34 pages in aastex5.0 format, including 28 B&W and 4 color figures.
Uses LaTex packages: subfigure, lscape and psfig. Accepted for publication in
ApJ. High resolution version can be found at:
http://www.na.astro.it/~paolillo/publications.htm
Storage of light in atomic vapor
We report an experiment in which a light pulse is decelerated and trapped in
a vapor of Rb atoms, stored for a controlled period of time, and then released
on demand. We accomplish this storage of light by dynamically reducing the
group velocity of the light pulse to zero, so that the coherent excitation of
the light is reversibly mapped into a collective Zeeman (spin) coherence of the
Rb vapor
Optimal transport of ultracold atoms in the non-adiabatic regime
We report the transport of ultracold atoms with optical tweezers in the
non-adiabatic regime, i.e. on a time scale on the order of the oscillation
period. We have found a set of discrete transport durations for which the
transport is not accompanied by any excitation of the centre of mass of the
cloud. We show that the residual amplitude of oscillation of the dipole mode is
given by the Fourier transform of the velocity profile imposed to the trap for
the transport. This formalism leads to a simple interpretation of our data and
simple methods for optimizing trapped particles displacement in the
non-adiabatic regime
Spatial mapping of hepatitis C prevalence in recent injecting drug users in contact with services.
In developed countries the majority of hepatitis C virus (HCV) infections occur in injecting drug users (IDUs) with prevalence in IDUs often high, but with wide geographical differences within countries. Estimates of local prevalence are needed for planning services for IDUs, but it is not practical to conduct HCV seroprevalence surveys in all areas. In this study survey data from IDUs attending specialist services were collected in 52/149 sites in England between 2006 and 2008. Spatially correlated random-effects models were used to estimate HCV prevalence for all sites, using auxiliary data to aid prediction. Estimates ranged from 14% to 82%, with larger cities, London and the North West having the highest HCV prevalence. The methods used generated robust estimates for each area, with a well-identified spatial pattern that improved predictions. Such models may be of use in other areas of study where surveillance data are sparse
Application of remote sensing to state and regional problems
There are no author-identified significant results in this report
Agent-based homeostatic control for green energy in the smart grid
With dwindling non-renewable energy reserves and the adverse effects of climate change, the development of the smart electricity grid is seen as key to solving global energy security issues and to reducing carbon emissions. In this respect, there is a growing need to integrate renewable (or green) energy sources in the grid. However, the intermittency of these energy sources requires that demand must also be made more responsive to changes in supply, and a number of smart grid technologies are being developed, such as high-capacity batteries and smart meters for the home, to enable consumers to be more responsive to conditions on the grid in real-time. Traditional solutions based on these technologies, however, tend to ignore the fact that individual consumers will behave in such a way that best satisfies their own preferences to use or store energy (as opposed to that of the supplier or the grid operator). Hence, in practice, it is unclear how these solutions will cope with large numbers of consumers using their devices in this way. Against this background, in this paper, we develop novel control mechanisms based on the use of autonomous agents to better incorporate consumer preferences in managing demand. These agents, residing on consumers' smart meters, can both communicate with the grid and optimise their owner's energy consumption to satisfy their preferences. More specifically, we provide a novel control mechanism that models and controls a system comprising of a green energy supplier operating within the grid and a number of individual homes (each possibly owning a storage device). This control mechanism is based on the concept of homeostasis whereby control signals are sent to individual components of a system, based on their continuous feedback, in order to change their state so that the system may reach a stable equilibrium. Thus, we define a new carbon-based pricing mechanism for this green energy supplier that takes advantage of carbon-intensity signals available on the internet in order to provide real-time pricing. The pricing scheme is designed in such a way that it can be readily implemented using existing communication technologies and is easily understandable by consumers. Building upon this, we develop new control signals that the supplier can use to incentivise agents to shift demand (using their storage device) to times when green energy is available. Moreover, we show how these signals can be adapted according to changes in supply and to various degrees of penetration of storage in the system. We empirically evaluate our system and show that, when all homes are equipped with storage devices, the supplier can significantly reduce its reliance on other carbon-emitting power sources to cater for its own shortfalls. By so doing, the supplier reduces the carbon emission of the system by up to 25% while the consumer reduces its costs by up to 14.5%. Finally, we demonstrate that our homeostatic control mechanism is not sensitive to small prediction errors and the supplier is incentivised to accurately predict its green production to minimise costs
LOFAR observations of 4C+19.44. On the discovery of low frequency spectral curvature in relativistic jet knots
We present the first LOFAR observations of the radio jet in the quasar
4C+19.44 (a.k.a. PKS 1354+19) obtained with the long baselines. The achieved
resolution is very well matched to that of archival Jansky Very Large Array
(JVLA) observations at higher radio frequencies as well as the archival X-ray
images obtained with {\it Chandra}. We found that, for several knots along the
jet, the radio flux densities measured at hundreds of MHz lie well below the
values estimated by extrapolating the GHz spectra. This clearly indicates the
presence of spectral curvature. Radio spectral curvature has been already
observed in different source classes and/or extended radio structures and it
has been often interpreted as due to intrinsic processes, as a curved particle
energy distribution, rather than absorption mechanisms ({ Razin-Tsytovich}
effect, free-free or synchrotron self absorption to name a few). Here we
discuss our results according to the scenario where particles undergo
stochastic acceleration mechanisms also in quasar jet knots.Comment: 13 pages, 4 tables, 4 figures, pre-proof version, published on the
Astrophysical Journal (Harris, et al. 2019 ApJ, 873, 21
- …
