We report the transport of ultracold atoms with optical tweezers in the
non-adiabatic regime, i.e. on a time scale on the order of the oscillation
period. We have found a set of discrete transport durations for which the
transport is not accompanied by any excitation of the centre of mass of the
cloud. We show that the residual amplitude of oscillation of the dipole mode is
given by the Fourier transform of the velocity profile imposed to the trap for
the transport. This formalism leads to a simple interpretation of our data and
simple methods for optimizing trapped particles displacement in the
non-adiabatic regime