2,034 research outputs found

    Correlations of πN\boldsymbol{\pi N} Partial Waves for Multi-Reaction Analyses

    Full text link
    In the search for missing baryonic resonances, many analyses include data from a variety of pion- and photon-induced reactions. For elastic πN\pi N scattering, however, usually the partial waves of the SAID or other groups are fitted, instead of data. We provide the partial-wave covariance matrices needed to perform correlated χ2\chi^2 fits, in which the obtained χ2\chi^2 equals the actual χ2\chi^2 up non-linear and normalization corrections. For any analysis relying on partial waves extracted from elastic pion scattering, this is a prerequisite to assess the significance of resonance signals and to assign any uncertainty on results. The influence of systematic errors is also considered.Comment: 7 pages, 3 figures; Acknowledgements update

    A Topos Foundation for Theories of Physics: IV. Categories of Systems

    Get PDF
    This paper is the fourth in a series whose goal is to develop a fundamentally new way of building theories of physics. The motivation comes from a desire to address certain deep issues that arise in the quantum theory of gravity. Our basic contention is that constructing a theory of physics is equivalent to finding a representation in a topos of a certain formal language that is attached to the system. Classical physics arises when the topos is the category of sets. Other types of theory employ a different topos. The previous papers in this series are concerned with implementing this programme for a single system. In the present paper, we turn to considering a collection of systems: in particular, we are interested in the relation between the topos representation for a composite system, and the representations for its constituents. We also study this problem for the disjoint sum of two systems. Our approach to these matters is to construct a category of systems and to find a topos representation of the entire category.Comment: 38 pages, no figure

    A Topos Foundation for Theories of Physics: II. Daseinisation and the Liberation of Quantum Theory

    Get PDF
    This paper is the second in a series whose goal is to develop a fundamentally new way of constructing theories of physics. The motivation comes from a desire to address certain deep issues that arise when contemplating quantum theories of space and time. Our basic contention is that constructing a theory of physics is equivalent to finding a representation in a topos of a certain formal language that is attached to the system. Classical physics arises when the topos is the category of sets. Other types of theory employ a different topos. In this paper, we study in depth the topos representation of the propositional language, PL(S), for the case of quantum theory. In doing so, we make a direct link with, and clarify, the earlier work on applying topos theory to quantum physics. The key step is a process we term `daseinisation' by which a projection operator is mapped to a sub-object of the spectral presheaf--the topos quantum analogue of a classical state space. In the second part of the paper we change gear with the introduction of the more sophisticated local language L(S). From this point forward, throughout the rest of the series of papers, our attention will be devoted almost entirely to this language. In the present paper, we use L(S) to study `truth objects' in the topos. These are objects in the topos that play the role of states: a necessary development as the spectral presheaf has no global elements, and hence there are no microstates in the sense of classical physics. Truth objects therefore play a crucial role in our formalism.Comment: 34 pages, no figure

    Role of the N∗N^*(1535) in the J/ψ→pˉηpJ/\psi\to \bar{p}\eta p and J/ψ→pˉK+ΛJ/\psi\to \bar{p}K^+\Lambda reactions

    Full text link
    We study the J/ψ→pˉηpJ/\psi\to \bar{p}\eta p and J/ψ→pˉK+ΛJ/\psi\to \bar{p}K^+\Lambda reactions with a unitary chiral approach. We find that the unitary chiral approach, which generates the N∗(1535)N^*(1535) dynamically, can describe the data reasonably well, particularly the ratio of the integrated cross sections. This study provides further support for the unitary chiral description of the N∗(1535)N^*(1535). We also discuss some subtle differences between the coupling constants determined from the unitary chiral approach and those determined from phenomenological studies.Comment: version to appear in PRC; certain features of the approach clarifie

    Optimal time-dependent polarized current pattern for fast domain wall propagation in nanowires: Exact solutions for biaxial and uniaxial anisotropies

    Get PDF
    One of the important issues in nanomagnetism is to lower the current needed for a technologically useful domain wall (DW) propagation speed. Based on the modified Landau-Lifshitz-Gilbert (LLG) equation with both Slonczewski spin-transfer torque and the field-like torque, we derive the optimal spin current pattern for fast DW propagation along nanowires. Under such conditions, the DW velocity in biaxial wires can be enhanced as much as ten times compared to the velocities achieved in experiments so far. Moreover, the fast variation of spin polarization can help DW depinning. Possible experimental realizations are discussed.Comment: 4 pages, 1 figur

    Dynamical coupled-channel approaches on a momentum lattice

    Get PDF
    Dynamical coupled-channel approaches are a widely used tool in hadronic physics that allow to analyze different reactions and partial waves in a consistent way. In such approaches the basic interactions are derived within an effective Lagrangian framework and the resulting pseudo-potentials are then unitarized in a coupled-channel scattering equation. We propose a scheme that allows for a solution of the arising integral equation in discretized momentum space for periodic as well as twisted boundary conditions. This permits to study finite size effects as they appear in lattice QCD simulations. The new formalism, at this stage with a restriction to S-waves, is applied to coupled-channel models for the sigma(600), f0(980), and a0(980) mesons, and also for the Lambda(1405) baryon. Lattice spectra are predicted.Comment: 7 pages, 4 figure

    Kaon Photoproduction and the Λ\Lambda Decay Parameter α−\alpha_-

    Get PDF
    The weak decay parameter α−\alpha_- of the Λ\Lambda is an important quantity for the extraction of polarization observables in various experiments. Moreover, in combination with α+\alpha_+ from Λˉ\bar\Lambda decay it provides a measure for matter-antimatter asymmetry. The weak decay parameter also affects the decay parameters of the Ξ\Xi and Ω\Omega baryons and, in general, any quantity in which the polarization of the Λ\Lambda is relevant. The recently reported value by the BESIII collaboration of 0.750(9)(4)0.750(9)(4) is significantly larger than the previous PDG value of 0.642(13)0.642(13) that had been accepted and used for over 40 years. In this work we make an independent estimate of α−\alpha_-, using an extensive set of polarization data measured in kaon photoproduction in the baryon resonance region and constraints set by spin algebra. The obtained value is 0.721(6)(5). The result is corroborated by multiple statistical tests as well as a modern phenomenological model, showing that our new value yields the best description of the data in question. Our analysis supports the new BESIII finding that α−\alpha_- is significantly larger than the previous PDG value. Any experimental quantity relying on the value of α−\alpha_- should therefore be re-considered.Comment: 6 pages, 1 figure
    • …
    corecore