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Abstract – One of the important issues in nanomagnetism is to lower the current needed for
a technologically useful domain wall (DW) propagation speed. Based on the modified Landau-
Lifshitz-Gilbert (LLG) equation with both Slonczewski spin-transfer torque and the field-like
torque, we derive an optimal temporally and spatially varying spin current pattern for fast DW
propagation along nanowires. Under such conditions, the DW velocity in biaxial wires can be
enhanced as much as tens of times higher than that achieved in experiments so far. Moreover,
the fast variation of spin polarization can efficiently help DW depinning. Possible experimental
realizations are discussed.

Copyright c© EPLA, 2010

Fast magnetic domain wall (DW) propagation along
nanowires by means of electrical currents is presently
under intensive study in nanomagnetism experimen-
tally [1–5] and theoretically [6–8]. In addition to the
technological interest such as race track memory [1], DW
dynamics is also an interesting fundamental problem. The
dynamics of a single DW can be qualitatively understood
from one-dimensional (1D) analytical models [9] that
predict a rigid-body propagation below the Walker
breakdown and an oscillatory motion above it [9,10]. The
latter process is connected with a series of complicated
cyclic transformations of the DW structure and a drastic
reduction of the average DW velocity. The Walker limit is
thus the maximum velocity at which DW can propagate in
magnetic nanowires without changing its inner structure.
From a technological point of view, such a limit seems
to represent a major obstacle since the fidelity of data
transmission may depend on preserving the DW structure
while the utility requires speeding up the DW velocity
adequately. Various efforts have been made to overcome
this limit through the geometry design. For instance,
Lewis et al. [11] proposed a chirality filter consisting of

(a)E-mail: phxwan@ust.hk

a cross-shaped trap to preserve the DW structure. Yan
et al. [12] demonstrated the removal of Walker limit via
a micromagnetic study on the current-driven DW motion
in cylindrical Permalloy nanowires. Our focus is to find
a way to increase the velocity-current slope below the
Walker breakdown.
A DW propagates under a spin-polarized current

through angular-momentum transfer from conduction
electrons to the local magnetization, known as the spin-
transfer torque (STT) [13], which is different from the
magnetic-field–driven DW propagation originated from
the energy dissipation [10,14,15]. Two configurations
have been studied so far. One is the mostly studied case
in which current is along the wire axis [1–5]. The STT
exerted in this configuration is very small because the
angle between the current spin polarization direction
and local magnetization is very small everywhere. Very
recently, an alternative setup where the spin current
is injected perpendicular to the wire is proposed [16]
and experimentally realized [17]. The STT is much
larger in this perpendicular configuration. Generally
speaking, two types of spin torques exist: the Slonczewski
torque [13] (a-term) Ta =−γ aJMsM× (M× s) and the
field-like torque [18,19] (b-term) Tb =−γbJM× s, where
γ = |e|/me, M, Ms = |M|, and s are the gyromagnetic
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ratio, the magnetization of the magnet, the saturation
magnetization, and the spin polarization direction of
itinerant electrons, respectively. aJ = Pje�/2d|e|Ms and
bJ = βaJ [13,19] depend on the current density je and
spin polarization P , where d is the thickness of the free
magnetic layer and β is a small dimensionless parameter
that describes the relative strength of the field-like torque
to the Slonczewski torque and typically ranges from 0 to
0.5 [19,20]. In the case of a recent proposal [16] where
a constant spin current is injected perpendicular to the
wire with biaxial anisotropy and the spin polarization is
along the wire axis, the a-term is incapable of generating
a sustained DW motion, unless a very large current is
used, while the b-term can induce a DW propagation.
However, the b-term is much smaller than a-term for
usual magnetic materials [19,20]. Thus, it leads to a large
switching current requirement in order to reach a tech-
nologically useful DW propagation velocity, but a large
current could damage a device or affects its performance.
We show that the problem can be figured out if one uses
an optimal temporally and spatially varying spin current
pattern.
In this letter, we find the optimal spatiotemporal spin

current pattern for fast DW propagation whose speed
can be enhanced as much as tens of times in biaxial
wire. Possible experimental realizations of the spin current
pattern are also discussed.
The internal magnetic energy of a nanowire along the
z-axis can be expressed as

U [M] =

∫
d3x

(
J

2

[
(∇θ)2+sin2 θ (∇φ)2

]
+w(θ, φ)

)
,

(1)

where θ is the polar angle and φ is the azimuthal angle
of the local magnetization m=M/Ms. J and w are
the exchange energy constant and magnetic anisotropic
energy, respectively. The dynamics of M is governed
by the modified Landau-Lifshitz-Gilbert (LLG) equation
[13,16] with both the Slonczewski torque and the field-like
torque:

∂M

∂t
=−γM×Heff + α

Ms
M× ∂M

∂t
+Ta+Tb, (2)

hereHeff =− 1
µ0
δU/δM is the effective magnetic field and

α is the phenomenological Gilbert damping constant.
Consider a biaxial anisotropy w (θ, φ) =−K2 m2z +

K⊥
2 m

2
x, the effective field takes the form of Heff =

1
µ0Ms

(Kmz ẑ−K⊥mxx̂)+ J
µ0M2

s

∂2M
∂z2
. Here K and K⊥

describe energetic anisotropies along easy ẑ-axis and hard
x̂-axis, respectively. We assume that all local spins lie in
a fixed plane called DW plane, i.e., φ(z, t) = φ(t), which
should be checked self-consistently late. In the spherical
coordinates, eq. (2) becomes

θ̇+α sin θφ̇= γaJ (sθ +βsφ)+
γK⊥
2µ0Ms

sin θ sin 2φ, (3)

sin θφ̇−αθ̇= γaJ (sφ−βsθ)

− γ J
∂2θ
∂z2
− sin 2θ2

(
K +K⊥ cos2 φ

)
µ0Ms

, (4)

where sr, sθ, and sφ are the components of the unit spin

vector s alongm (playing the role of r̂), θ̂, and φ̂ defined in

terms of m, respectively. The DW profile satisfies J ∂
2θ
∂z2
−

sin 2θ
2

(
K +K⊥ cos2 φ

)
= 0 with the boundary condition of

θ= 0 and π at distance. One obtains the famous Walker’s
DW motion profile tan θ2 = exp

(
z−X(t)
∆

)
, in which X(t)

is the position of the DW center and ∆=
√

J
K+K⊥ cos2 φ

is the DW width resulting from the balance of anisotropy
energy and exchange energy [9]. These assumptions are
valid under sufficiently low current density which will
be demonstrated later. Substituting this DW profile into
eqs. (3) and (4), we have

−Ẋ
∆
+αφ̇= γ

aJ (sθ +βsφ)

sin θ
+
γK⊥
2µ0Ms

sin 2φ, (5)

α
Ẋ

∆
+ φ̇= γ

aJ (sφ−βsθ)
sin θ

. (6)

Notice sr does not contribute to the dynamics of DW
at all, the efficient way of using current in driving DW
motion should align spin polarization as

sr = 0, sθ = cos η, sφ = sin η, (7)

with η being the optimization parameter. Furthermore, to
ensure the spatial independence of Ẋ and φ, the above
equations require aJ to be proportional to sin θ, so we

let aJ =AJ sin θ=AJ sec h
(
z−X(t)
∆

)
with a constant AJ .

Thus, we have

Ẋ = γ∆
αa′J − b′J
1+α2

−∆ γK⊥
2µ0Ms (1+α2)

sin 2φ, (8)

φ̇= γ
a′J +αb

′
J

1+α2
+

αγK⊥
2µ0Ms (1+α2)

sin 2φ, (9)

where a′J (η) =AJ (sin η−β cos η) and b′J(η) =AJ(cos η+
β sin η). The time dependence of the DW width ∆ is
neglected in the derivations of eqs. (8) and (9). Equa-
tions (8) and (9) become exact when the DW undergoes
a rigid-body propagation with φ(t) = φ0 = const. Equa-
tions (8) and (9) describe the DW propagation speed and
the DW plane precession velocity, and for rigid-body solu-
tions, they give

αK⊥
2µ0Ms

sin 2φ0 (η) =− (a′J +αb′J ) , (10)

∆ (η) =

√
J

K +K⊥ cos2 φ0 (η)
, (11)

Ẋ (η) = γ
a′J
α
∆(η) . (12)
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The spin current pattern is described by η. A different
value yields different canted angle, DW width and propa-
gation velocity. From eq. (10), it is straightforward to show
that the assumption of rigid-body motion is valid under
the condition of AJ

√
(1+α2) (1+β2)� αK⊥

2µ0Ms
. Using the

materials parameters of Permalloy: Ms = 8.6× 105A/m,
K⊥ = 8× 105 J/m3 [1], α ranging from 0.01 to 0.5 and
the field-like parameter β ranging from 0 to 1, we find
that our proposed condition can be satisfied if we choose
a reasonable value AJ = 25Oe [16], which corresponds to
a peak current density of 6× 1010A/m2 when d= 3nm
and P = 0.32. Before finding the optimized spin current
pattern for maximal velocity, let us first consider two
special cases. One case is η= π. It gives the velocity u1 =
γ βAJ
α
∆(π), which is equal to the velocity achieved in one

recent experiment [17] where a uniform spin current je =
2d|e|MsAJ/P� is injected perpendicular to the nanowire
with electron spin polarization along the z-axis, i.e., sr =
cos θ, sθ =−sin θ, and sφ = 0. It shows again that the Slon-
czewski torque is incapable of generating sustained DW
propagation in a biaxial wire while the field-like torque
can. However, the velocity is rather small because of
β� 1 for usual materials. The DW velocity can be greatly
enhanced if the a-term is used. This is the case of η= π2 .

It gives the velocity u2 = γ
AJ
α
∆
(
π
2

)
. In typical materi-

als [20], β ∼ 0.1, so that the velocity can be 10 times larger
than u1. One can see that the DW propagation velocity is
greatly enhanced under a modification of the spin polar-
ization and spatially varying current density pattern.
The maximal velocity Ẋmax = Ẋ (η

∗) at the optimal
parameter η∗ can be easily found numerically from
eqs. (10), (11), and (12). The factor λ= Ẋmax/u1 =
sin η∗−β cos η∗

β
∆(η∗)
∆(π) measures the velocity enhancement.

The β−1-dependence of λ for various damping coefficients
and typical magnetic parameters is shown in fig. 1(a). It
is approximately linear, and insensitive to the damping
parameter α. The parameter η∗ as a function of β−1 for
α= 0.01 is also plotted in fig. 1(a). η∗ decreases with
β−1 and is saturated for large β−1. We find that η∗ is
not sensitive to α (the variation is less than 0.1% for
α∈ [0.01, 0.5], not shown in the figure). Figure 1(b) is the
plot of the spatial distribution of sx, sy, sz and aJ for the
optimized spin current pattern around the DW center.
We note that sx, sy, and sz vary only near the DW center,
and approach fixed values away from the DW. A large
perpendicular component sy is required to achieve a large
DW velocity. The reason is that the perpendicular spin
component induces a large effective field Ha =

aJ
Ms
M× s.

Thus, the DW moves under the Slonczewski torque with
a large component along the wire axis. This finding agrees
with the common wisdom that the angle between spin
polarization and local magnetization should be large in
order to increase the STT. It is also very interesting that
the current density is finite only near the DW center
while it becomes zero at distance, which should greatly
lower the energy consumption.

Fig. 1: (Color online) (a) DW velocity enhancement factor
λ vs. β−1 at different damping coefficients and optimized
parameter η∗ vs. β−1 for α= 0.01. (b) The spatial distribution
of x, y, z components of the optimal spin polarization pattern
and current density pattern for the maximal DW velocity
for α= 0.01 and β = 0.1. The other parameters are using the
materials parameters of Permalloy: Ms = 8.6× 105A/m, J =
1.3× 10−11 J/m, K = 500 J/m3, K⊥ = 8× 105 J/m3 [1], and a
reasonable value AJ = 25 Oe according to ref. [16].

As a comparison, let us consider an ideal wire with
uniaxial anisotropy, i.e., K⊥ = 0. In ref. [21], we find the

velocity enhancement factor λ=

√
1+
(
α−β
1+αβ

)2
, which

is rather inconspicuous even if the optimal spin current
is used since both α and β are far less than 1 in usual
magnetic materials. The physical reason lies in that the
a-term is capable of generating a sustained DW motion
in uniaxial wire, which is different from the role of the
a-term in the biaxial case. This demonstrates that our
optimal spin current pattern has especial significance in
real magnetic nanowires.
We would like to digress from the main subject here,

and to present our observation of the possible effect of
the temporal variation of current polarization on DW
depinning. Following the same analysis of refs. [22,23] on
current-induced DW depinning, one can show that the
time-dependent polarization of a current contributes an
extra depinning force. In their analysis [22,23], a DW is

treated as a quasiparticle [24], with mass mw =
2Sµ20M

2
s

∆γ2K⊥
trapped in a pinning potential E with a pinning force
Fpin =− dEdX whose explicit form is not important for the
following analysis. Here S is the cross-section of the wire.
Thus for small φ and according to the approximation in
refs. [22,23], eqs. (8) and (9) can be decoupled and become

F

mw
= Ẍ =

αγK⊥
(1+α2)µ0Ms

Ẋ − 1

mw

dE

dX

−∆γ
2K⊥
µ0Ms

a′J
1+α2

+ γ∆
a′J +αb

′
J

1+α2
η̇, (13)

where the temporal variation of DW width is neglected.
The contributions of the current-induced acceleration are
the last two terms. The force F on the DW depends not
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only on the current density but also on the time derivative
of the polarization η̇. When η̇ is large enough (greater than
γK⊥
µ0Ms

∼ 1012 s−1 for Permalloy), the η̇-term can dominate
the depinning.
Interestingly enough, a very recent experiment gener-

ated a spin-polarized current perpendicular to a nanowire,
demonstrating that such a current can indeed be used
to manipulate DW motion [17]. To implement the strat-
egy presented here, it is still a technological challenge
to generate a required spatiotemporally dependent
spin-polarized current. Some theoretical proposals for
generating a designed current pattern can be found in
the literature. For instance, using a magnetic scanning
tunneling microscopic (STM) tip above a magnetic
nanowire to produce localized spin-polarized current was
already proposed by Tao et al. [25] and Delgado et al. [26].
Experimentally, Ziegler et al. [27] recently demonstrated a
control of spin-polarized current in a STM by single-atom
transfer. Although generating the optimal spin current
pattern is beyond the present technology, there is no
reason to believe that such a challenge cannot be met.
Thus the theoretical results will be relevant when the
generation of an arbitrary spin-polarized current pattern
becomes true.
The spin pumping effect is neglected because the

DW-motion–induced current [28], 〈jz〉= �

eL
(σ↑−σ↓) ξẊ∆

is much smaller than the applied external spin-polarized
current, where ξ is the nonadiabaticity parameter typically
around 0.01 [5], L is the length of the nanowire, σ↑ and
σ↓ denote the conductivities of the majority and minority
electrons, respectively. Using [17] L∼ 5µm, ∆∼ 50 nm,
the DW velocity Ẋ ∼ 800m/s, and a typical conductivity
σ↑ ∼ 106 Ω−1m−1, the pumped electric current density
is less than 105A/m2, which is much smaller than the
applied current of the order of 1010–1012A/m2 in usual
experiments [17].
To conclude, we propose an optimal spin current

pattern for high DW propagation velocity without Walker
breakdown in magnetic nanowires. In uniaxial wires this
enhancement is of modest size, while in biaxial wires a
factor of a few tens can be achieved. The nature of the
ultrafast switching-time of the spin degree of freedom
proves to be a novel way to improve the efficiency
of DW motion against the pinning. We expect our
proposal will stimulate and also possibly guide future
experiments.
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