67 research outputs found

    On X-ray-singularities in the f-electron spectral function of the Falicov-Kimball model

    Full text link
    The f-electron spectral function of the Falicov-Kimball model is calculated within the dynamical mean-field theory using the numerical renormalization group method as the impurity solver. Both the Bethe lattice and the hypercubic lattice are considered at half filling. For small U we obtain a single-peaked f-electron spectral function, which --for zero temperature-- exhibits an algebraic (X-ray) singularity (ωα|\omega|^{-\alpha}) for ω0\omega \to 0. The characteristic exponent α\alpha depends on the Coulomb (Hubbard) correlation U. This X-ray singularity cannot be observed when using alternative (Keldysh-based) many-body approaches. With increasing U, α\alpha decreases and vanishes for sufficiently large U when the f-electron spectral function develops a gap and a two-peak structure (metal-insulator transition).Comment: 8 pages, 8 figures, revte

    Band gap bowing of binary alloys: Experimental results compared to theoretical tight-binding supercell calculations for CdZnSe

    Full text link
    Compound semiconductor alloys of the type ABC find widespread applications as their electronic bulk band gap varies continuously with x, and therefore a tayloring of the energy gap is possible by variation of the concentration. We model the electronic properties of such semiconductor alloys by a multiband tight-binding model on a finite ensemble of supercells and determine the band gap of the alloy. This treatment allows for an intrinsic reproduction of band bowing effects as a function of the concentration x and is exact in the alloy-induced disorder. In the present paper, we concentrate on bulk CdZnSe as a well-defined model system and give a careful analysis on the proper choice of the basis set and supercell size, as well as on the necessary number of realizations. The results are compared to experimental results obtained from ellipsometric measurements of CdZnSe layers prepared by molecular beam epitaxy (MBE) and photoluminescence (PL) measurements on catalytically grown CdZnSe nanowires reported in the literature.Comment: 7 pages, 6 figure

    Localization properties of driven disordered one-dimensional systems

    Full text link
    We generalize the definition of localization length to disordered systems driven by a time-periodic potential using a Floquet-Green function formalism. We study its dependence on the amplitude and frequency of the driving field in a one-dimensional tight-binding model with different amounts of disorder in the lattice. As compared to the autonomous system, the localization length for the driven system can increase or decrease depending on the frequency of the driving. We investigate the dependence of the localization length with the particle's energy and prove that it is always periodic. Its maximum is not necessarily at the band center as in the non-driven case. We study the adiabatic limit by introducing a phenomenological inelastic scattering rate which limits the delocalizing effect of low-frequency fields.Comment: Accepted for publication in European Physical Journal

    Extended DFT+U+V method with on-site and inter-site electronic interactions

    Full text link
    In this article we introduce a generalization of the popular DFT+U method based on the extended Hubbard model that includes on-site and inter-site electronic interactions. The novel corrective Hamiltonian is designed to study systems for which electrons are not completely localized on atomic states (according to the general scheme of Mott localization) and hybridization between orbitals from different sites plays an important role. The application of the extended functional to archetypal Mott - charge-transfer (NiO) and covalently bonded insulators (Si and GaAs) demonstrates its accuracy and versatility and the possibility to obtain a unifying and equally accurate description for a broad range of very diverse systems

    Metal-insulator transition in EuO

    Full text link
    It is shown that the spectacular metal-insulator transition in Eu-rich EuO can be simulated within an extended Kondo lattice model. The different orders of magnitude of the jump in resistivity in dependence on the concentration of oxygen vacancies as well as the low-temperature resistance minimum in high-resistivity samples are reproduced quantitatively. The huge colossal magnetoresistance (CMR) is calculated and discussed

    Fluctuation-driven insulator-to-metal transition in an external magnetic field

    Full text link
    We consider a model for a metal-insulator transition of correlated electrons in an external magnetic field. We find a broad region in interaction and magnetic field where metallic and insulating (fully magnetized) solutions coexist and the system undergoes a first-order metal-insulator transition. A global instability of the magnetically saturated solution precedes the local ones and is caused by collective fluctuations due to poles in electron-hole vertex functions.Comment: REVTeX 4 pages, 3 PS figure

    Linked Cluster Expansion Around Mean-Field Theories of Interacting Electrons

    Full text link
    A general expansion scheme based on the concept of linked cluster expansion from the theory of classical spin systems is constructed for models of interacting electrons. It is shown that with a suitable variational formulation of mean-field theories at weak (Hartree-Fock) and strong (Hubbard-III) coupling the expansion represents a universal and comprehensive tool for systematic improvements of static mean-field theories. As an example of the general formalism we investigate in detail an analytically tractable series of ring diagrams that correctly capture dynamical fluctuations at weak coupling. We introduce renormalizations of the diagrammatic expansion at various levels and show how the resultant theories are related to other approximations of similar origin. We demonstrate that only fully self-consistent approximations produce global and thermodynamically consistent extensions of static mean field theories. A fully self-consistent theory for the ring diagrams is reached by summing the so-called noncrossing diagrams.Comment: 17 pages, REVTEX, 13 uuencoded postscript figures in 2 separate file

    Spectral functions of the Falicov-Kimball model with electronic ferroelectricity

    Get PDF
    We calculate the angular resolved photoemission spectrum of the Falicov-Kimball model with electronic ferroelectricity where dd- and ff-electrons have different hoppings. In mix-valence regimes, the presence of strong scattering processes between dd-ff excitons and a hole, created by emission of an electron, leads to the formation of pseudospin polarons and novel electronic structures with bandwidth scaling with that of dd-ff excitons. Especially, in the two-dimensional case, we find that flat regions exist near the bottom of the quasiparticle band in a wide range of the dd- and ff-level energy difference.Comment: 5 pages, 5 figure
    corecore