210 research outputs found

    Multiband effective bond-orbital model for nitride semiconductors with wurtzite structure

    Full text link
    A multiband empirical tight-binding model for group-III-nitride semiconductors with a wurtzite structure has been developed and applied to both bulk systems and embedded quantum dots. As a minimal basis set we assume one s-orbital and three p-orbitals, localized in the unit cell of the hexagonal Bravais lattice, from which one conduction band and three valence bands are formed. Non-vanishing matrix elements up to second nearest neighbors are taken into account. These matrix elements are determined so that the resulting tight-binding band structure reproduces the known Gamma-point parameters, which are also used in recent kp-treatments. Furthermore, the tight-binding band structure can also be fitted to the band energies at other special symmetry points of the Brillouin zone boundary, known from experiment or from first-principle calculations. In this paper, we describe details of the parametrization and present the resulting tight-binding band structures of bulk GaN, AlN, and InN with a wurtzite structure. As a first application to nanostructures, we present results for the single-particle electronic properties of lens-shaped InN quantum dots embedded in a GaN matrix.Comment: 10 pages, 5 figures, two supplementary file

    Derivation of phenomenological expressions for transition matrix elements for electron-phonon scattering

    Full text link
    In the literature on electron-phonon scatterings very often a phenomenological expression for the transition matrix element is used which was derived in the textbooks of Ashcroft/Mermin and of Czycholl. There are various steps in the derivation of this expression. In the textbooks in part different arguments have been used in these steps, but the final result is the same. In the present paper again slightly different arguments are used which motivate the procedure in a more intuitive way. Furthermore, we generalize the phenomenological expression to describe the dependence of the matrix elements on the spin state of the initial and final electron state

    A comparison of atomistic and continuum theoretical approaches to determine electronic properties of GaN/AlN quantum dots

    Full text link
    In this work we present a comparison of multiband k.p-models, the effective bond-orbital approach, and an empirical tight-binding model to calculate the electronic structure for the example of a truncated pyramidal GaN/AlN self-assembled quantum dot with a zincblende structure. For the system under consideration, we find a very good agreement between the results of the microscopic models and the 8-band k.p-formalism, in contrast to a 6+2-band k.p-model, where conduction band and valence band are assumed to be decoupled. This indicates a surprisingly strong coupling between conduction and valence band states for the wide band gap materials GaN and AlN. Special attention is paid to the possible influence of the weak spin-orbit coupling on the localized single-particle wave functions of the investigated structure

    Optically and electrically controllable adatom spin-orbital dynamics in transition metal dichalcogenides

    Full text link
    We analyze the interplay of spin-valley coupling, orbital physics and magnetic anisotropy taking place at single magnetic atoms adsorbed on semiconducting transition-metal dichalcogenides, MX2_2 (M = Mo, W; X = S, Se). Orbital selection rules turn out to govern the kinetic exchange coupling between the adatom and charge carriers in the MX2_2 and lead to highly orbitally dependent spin-flip scattering rates, as we illustrate for the example of transition metal adatoms with d9d^9 configuration. Our ab initio calculations suggest that d9d^9 configurations are realizable by single Co, Rh, or Ir adatoms on MoS2_2, which additionally exhibit a sizable magnetic anisotropy. We find that the interaction of the adatom with carriers in the MX2_2 allows to tune its behavior from a quantum regime with full Kondo screening to a regime of "Ising spintronics" where its spin-orbital moment acts as classical bit, which can be erased and written electronically and optically.Comment: 6 pages, 4 figure

    Optical properties of self-organized wurtzite InN/GaN quantum dots: A combined atomistic tight-binding and full configuration interaction calculation

    Full text link
    In this work we investigate the electronic and optical properties of self-assembled InN/GaN quantum dots. The one-particle states of the low-dimensional heterostructures are provided by a tight-binding model that fully includes the wurtzite crystal structure on an atomistic level. Optical dipole and Coulomb matrix elements are calculated from these one-particle wave functions and serve as an input for full configuration interaction calculations. We present multi-exciton emission spectra and discuss in detail how Coulomb correlations and oscillator strengths are changed by the piezoelectric fields present in the structure. Vanishing exciton and biexciton ground state emission for small lens-shaped dots is predicted.Comment: 3 pages, 2 figure
    • …
    corecore