1,107 research outputs found

    <b><i>Topoisomerase 1</i></b> Promoter Variants and Benefit from Irinotecan in Metastatic Colorectal Cancer Patients

    Get PDF
    Objective: Topoisomerase 1 (topo-1) is an important target for the treatment of metastatic colorectal cancer (CRC). The aim of the present study was to evaluate the correlation between topo-1 single-nucleotide polymorphisms (SNPs) and clinical outcome in metastatic CRC (mCRC) patients. Methods: With the use of specific software (PROMO 3.0), we performed an in silico analysis of topo-1 promoter SNPs; the rs6072249 and rs34282819 SNPs were included in the study. DNA was extracted from 105 mCRC patients treated with FOLFIRI ± bevacizumab in the first line. SNP genotyping was performed by real-time PCR. Genotypes were correlated with clinical parameters (objective response rate, progression-free survival, and overall survival). Results: No single genotype was significantly associated with clinical variables. The G allelic variant of rs6072249 topo-1 SNP is responsible for GC factor and X-box-binding protein transcription factor binding. The same allelic variant showed a nonsignificant trend toward a shorter progression-free survival (GG, 7.5 months; other genotypes, 9.3 months; HR 1.823, 95% CI 0.8904-3.734; p = 0.1). Conclusion: Further analyses are needed to confirm that the topo-1 SNP rs6072249 and transcription factor interaction could be a part of tools to predict clinical outcome in mCRC patients treated with irinotecan-based regimens

    Modulating membrane shape and mechanics of minimal cells by light: area increase, softening and interleaflet coupling of membrane models doped with azobenzene-lipid photoswitches

    Get PDF
    Light can effectively interrogate biological systems providing control over complex cellular processes. Particularly advantageous features of photo-induced processes are reversibility, physiological compatibility, and spatiotemporal precision. Understanding the underlying biophysics of light-triggered changes in bio-systems is crucial for cell viability and optimizing clinical applications of photo-induced processes in biotechnology, optogenetics and photopharmacology. Employing membranes doped with the photolipid azobenzene-phosphatidylcholine (azo-PC), we provide a holistic picture of light-triggered changes in membrane morphology, mechanics and dynamics. We combine microscopy of giant vesicles as minimal cell models, Langmuir monolayers, and molecular dynamics simulations. We employ giant vesicle elelctrodeformation as a facile and accurate approach to quantify the magnitude, reversibility and kinetics of light-induced area expansion/shrinkage as a result of azo-PC photoisomerization and content. Area increase as high as ~25% and a 10-fold decrease in the membrane bending rigidity is observed upon trans-to-cis azo-PC isomerization. These results are in excellent agreement with simulations data and monolayers. Simulations also show that trans-to-cis isomerization of azo-PC decreases the membrane leaflet coupling. We demonstrate that light can be used to finely manipulate the shape and mechanics of photolipid-doped minimal cell models and liposomal drug carriers, thus, presenting a promising therapeutic alternative for the repair of cellular disorders.Competing Interest StatementThe authors have declared no competing interest

    Randomised trials and meta-analyses of double vs triple antithrombotic therapy for atrial fibrillation-ACS/PCI: A critical appraisal

    Get PDF
    •The optimal antithrombotic regimen to be used in patients with AF and PCI or ACS is still debated.•Each of the six randomised controlled trials comparing double to triple therapy has limitations.•None was powered to assess differences between treatment arms in ischaemic event rates.•The contrasting results regarding ischaemic events within published meta-analyses can be explained by heterogeneity, incompleteness and varying definitions of stent thrombosis.•The overall reduced bleeding rates, but increased early definite and probable stent thrombosis rates with double versus triple antithrombotic therapy encourage consideration of triple therapy during the first weeks from PCI followed by double therapy

    The effect of metal cations on the aqueous behavior of dopamine. Thermodynamic investigation of the binary and ternary interactions with cd2+, cu2+ and uo22+ in nacl at different ionic strengths and temperatures

    Get PDF
    The interactions of dopamine [2-(3,4-Dihydroxyphenyl)ethylamine, (Dop−)] with cadmium(II), copper(II) and uranyl(VI) were studied in NaCl(aq) at different ionic strengths (0 ≤ I/mol dm−3 ≤ 1.0) and temperatures (288.15 ≤ T/K ≤ 318.15). From the elaboration of the experimental data, it was found that the speciation models are featured by species of different stoichiometry and stability. In particular for cadmium, the formation of only MLH, ML and ML2 (M = Cd2+; L = dopamine) species was obtained. For uranyl(VI) (UO22+), the speciation scheme is influenced by the use of UO2(acetate)2 salt as a chemical; in this case, the formation of ML2, MLOH and the ternary MLAc (Ac = acetate) species in a wide pH range was observed. The most complex speciation model was obtained for the interaction of Cu2+ with dopamine; in this case we observed the formation of the following species: ML2, M2L, M2L2, M2L2(OH)2, M2LOH and ML2OH. These speciation models were determined at each ionic strength and temperature investigated. As a further contribution to this kind of investigation, the ternary interactions of dopamine with UO22+/Cd2+ and UO22+/Cu2+ were investigated at I = 0.15 mol dm−3 and T = 298.15K. These systems have different speciation models, with the MM’L and M2M’L2OH [M = UO22+; M’ = Cd2+ or Cu2+, L = dopamine] common species; the species of the mixed Cd2+ containing system have a higher stability with respect the Cu2+ containing one. The dependence on the ionic strength of complex formation constants was modelled by using both an extended Debye–Hückel equation that included the Van’t Hoff term for the calculation of the formation enthalpy change values and the Specific Ion Interaction Theory (SIT). The results highlighted that, in general, the entropy is the driving force of the process. The quantification of the effective sequestering ability of dopamine towards the studied cations was evaluated by using a Boltzmann-type equation and the calculation of pL0.5 parameter. The sequestering ability was quantified at different ionic strengths, temperatures and pHs, and this resulted, in general, that the pL0.5 trend was always: UO22+ &gt; Cu2+ &gt; Cd2+

    Molecular and pathological characterization of the EZH2 rs3757441 single nucleotide polymorphism in colorectal cancer

    Get PDF
    Background The enhancer of zeste-homolog 2 (EZH2) is involved in cancer development through gene silencing by trimethylation of lysine 27 of histone 3 (H3K27me3). The C/C genotype for the EZH2 rs3757441 single-nucleotide polymorphism (SNP) is linked with poor prognosis in metastatic colorectal cancer (CRC), but molecular and pathological characterization of this SNP is lacking. Methods 119 primary CRCs were analyzed. SNP was evaluated by real-time PCR from colonic healthy tissue, while EZH2 and H3K27me3 expression were studied by immunohistochemistry. We primarily looked for correlation between EZH2 rs3757441 genotypes and EZH2/H3K27me3 expression. Potential associations between EZH2/H3K27me3 expression and clinico-pathological features or KRAS exon 2 and BRAF exon 15 mutations were secondary endpoints. Statistical analysis was performed by chi-square test, T-test or ANOVA. Results The C/C genotype was significantly associated with higher EZH2 (100 vs. 44 %; P = 0.019) and H3K27me3 (100 vs. 38 %; P = 0.009) staining intensity compared with C/T and T/T. EZH2 3+ staining significantly correlated with stronger H3K27me3 expression (P = 0.039). KRAS and BRAF mutations were not associated with EZH2 or H3K27me3 expression. Conclusion EZH2 rs3757441 C/C genotype is associated with stronger EZH2 and H3K27me3 immunoreactivity in primary CRC: this SNP may serve as a promising biomarker for EZH2-targeting agents and may add independent information to KRAS and BRAF testing

    The 9p21 Rs 1333040 polymorphism is associated with coronary microvascular obstruction in ST-segment elevation myocardial infarction treated by primary angioplasty

    Get PDF
    Background: Microvascular obstruction (MVO) after primary percutaneous coronary intervention (pPCI) leads to higher incidence of both early and late complications. A number of single nucleotide polymorphisms in 9p21 chromosome have been shown to affect angiogenesis in response to ischaemia. In particular, Rs1333040 with its three genotypic vriants C/C, T/C and T/T might influence the occurrence of MVO after pPCI. Methods: We enrolled ST-elevation myocardial infarction (STEMI) patients undergoing pPCI. The Rs1333040 polymorphism was evaluated by polymerase chain reaction-restriction fragment length polymorphism using restriction endonucleases (Bsml). Two expert operators unaware of the patients' identity performed the angiographic analysis; collaterals were assessed applying Rentrop's classification. Angiographic MVO was defined as a post-pPCI Thrombolysis In Myocardial Infarction (TIMI)&lt;3 or TIMI 3 with myocardial blush grade 0 or 1, whereas electrocardiographic MVO was defined as ST segment resolution Results: Among our 133 STEMI patients (mean age 63 +/- 11 years, men 72%), 35 (26%) and 53 (40%) respectively experienced angiographic or electrocardiographic MVO. Angiographic and electrocardiographic MVO were different among the three variants (p= 0.03 and p=0.02 respectively). In particular, T/T genotype was associated with a higher incidence of both angiographic and electrocardiographic MVO compared with C/C genotype (p=0.04 and p=0.03 respectively). Moreover, Rentrop score &lt;2 detection rate differed among the three genotypes (p=0.03). In particular T/T genotype was associated with a higher incidence of a Rentrop score &lt;2 as compared with C/C genotype (p= 0.02). Conclusion: Rs1333040 polymorphism genetic variants portend different MVO incidence. In particular, T/T genotype is related to angiographic and electrocardiographic MVO and to worse collaterals towards the culprit artery

    Thromboembolic event rate in patients exposed to anti-inhibitor coagulant complex : a meta-analysis of 40-year published data

    Get PDF
    Anti-inhibitor coagulant complex (AICC), an activated prothrombin complex concentrate, has been available for the treatment of patients with inhibitors since 1977, and thromboembolic events (TEEs) have been reported after infusion of AICC in patients with congenital or acquired hemophilia. With the aim of estimating the TEE incidence rate (IR) related to AICC exposure in these patients, a systematic review of the literature was carried out in Medline, according to PRISMA guidelines, from inception date to March 2017. The IR of TEEs was estimated through a meta-analytic approach by using a generalized linear mixed model based on a Poisson distribution. Thirty-nine studies were included (1980-2016). Overall, 46 TEEs were reported; of these, 13 were reported as disseminated intravascular coagulations, 11 as myocardial infarctions, and 3 as thrombotic cerebrovascular accidents. The pooled TEE IR was 2.87 (95% confidence interval [CI], 0.32-25.40) per 100\u2009000 AICC infusions (5.42 in retrospective studies [95% CI, 0.92-31.82]; 1.09 in prospective studies [95% CI, 0.01-238.77]). The TEE rate was 5.09 (95% CI, 0.01-1795.60) per 100\u2009000 AICC infusions administered on demand, whereas no TEEs were reported with prophylaxis. Interestingly, the estimated IR in patients with congenital hemophilia was <0.01 per 100\u2009000 infusions. These findings provide robust evidence of safety of AICC over almost 40 years of published studies

    Microvascular Dysfunction in Heart Failure With Preserved Ejection Fraction

    Get PDF
    Heart failure with preserved ejection fraction (HFpEF) is an increasingly studied entity accounting for 50% of all diagnosed heart failure and that has claimed its own dignity being markedly different from heart failure with reduced EF in terms of etiology and natural history (Graziani et al., 2018). Recently, a growing body of evidence points the finger toward microvascular dysfunction as the major determinant of the pathological cascade that justifies clinical manifestations (Crea et al., 2017). The high burden of comorbidities such as metabolic syndrome, hypertension, atrial fibrillation, chronic kidney disease, obstructive sleep apnea, and similar, could lead to a systemic inflammatory state that impacts the physiology of the endothelium and the perivascular environment, engaging complex molecular pathways that ultimately converge to myocardial fibrosis, stiffening, and dysfunction (Paulus and Tschope, 2013). These changes could even self-perpetrate with a positive feedback where hypoxia and locally released inflammatory cytokines trigger interstitial fibrosis and hypertrophy (Ohanyan et al., 2018). Identifying microvascular dysfunction both as the cause and the maintenance mechanism of this condition has opened the field to explore specific pharmacological targets like nitric oxide (NO) pathway, sarcomeric titin, transforming growth factor beta (TGF-β) pathway, immunomodulators or adenosine receptors, trying to tackle the endothelial impairment that lies in the background of this syndrome (Graziani et al., 2018;Lam et al., 2018). Yet, many questions remain, and the new data collected still lack a translation to improved treatment strategies. To further elaborate on this tangled and exponentially growing topic, we will review the evidence favoring a microvasculature-driven etiology of this condition, its clinical correlations, the proposed diagnostic workup, and the available/hypothesized therapeutic options to address microvascular dysfunction in the failing heart

    Repurposing of plasminogen: An orphan medicinal product suitable for SARS-CoV-2 inhalable therapeutics

    Get PDF
    The SARS-CoV-2 infection is associated with pulmonary coagulopathy, which determines the deposition of fibrin in the air spaces and lung parenchyma. The resulting lung lesions compromise patient pulmonary function and increase mortality, or end in permanent lung damage for those who have recovered from the COVID-19 disease. Therefore, local pulmonary fibrinolysis can be efficacious in degrading pre-existing fibrin clots and reducing the conversion of lung lesions into lasting scars. Plasminogen is considered a key player in fibrinolysis processes, and in view of a bench-to-bedside translation, we focused on the aerosolization of an orphan medicinal product (OMP) for ligneous conjunctivitis: human plasminogen (PLG-OMP) eye drops. As such, the sterile and preservative-free solution guarantees the pharmaceutical quality of GMP production and meets the Ph. Eur. requirements of liquid preparations for nebulization. PLG-OMP aerosolization was evaluated both from technological and stability viewpoints, after being submitted to either jet or ultrasonic nebulization. Jet nebulization resulted in a more efficient delivery of an aerosol suitable for pulmonary deposition. The biochemical investigation highlighted substantial protein integrity maintenance with the percentage of native plasminogen band &gt; 90%, in accordance with the quality specifications of PLG-OMP. In a coherent way, the specific activity of plasminogen is maintained within the range 4.8–5.6 IU/mg (PLG-OMP pre-nebulization: 5.0 IU/mg). This is the first study that focuses on the technological and biochemical aspects of aerosolized plasminogen, which could affect both treatment efficacy and clinical dosage delivery. Increasing evidence for the need of local fibrinolytic therapy could merge with the availability of PLG-OMP as an easy handling solution, readily aerosolizable for a fast translation into an extended clinical efficacy assessment in COVID-19 patients

    An impairment-specific hip exoskeleton assistance for gait training in subjects with acquired brain injury: a feasibility study

    Get PDF
    This study was designed to investigate the feasibility and the potential effects on walking performance of a short gait training with a novel impairment-specific hip assistance (iHA) through a bilateral active pelvis orthosis (APO) in patients with acquired brain injury (ABI). Fourteen subjects capable of independent gait and exhibiting mild-to-moderate gait deficits, due to an ABI, were enrolled. Subjects presenting deficit in hip flexion and/or extension were included and divided into two groups based on the presence (group A, n = 6) or absence (group B, n = 8) of knee hyperextension during stance phase of walking. Two iHA-based profiles were developed for the groups. The protocol included two overground gait training sessions using APO, and two evaluation sessions, pre and post training. Primary outcomes were pre vs. post-training walking distance and steady-state speed in the 6-min walking test. Secondary outcomes were self-selected speed, joint kinematics and kinetics, gait symmetry and forward propulsion, assessed through 3D gait analysis. Following the training, study participants significantly increased the walked distance and average steady-state speed in the 6-min walking tests, both when walking with and without the APO. The increased walked distance surpassed the minimal clinically important difference for groups A and B, (respectively, 42 and 57&nbsp;m &gt; 34&nbsp;m). In group A, five out of six subjects had decreased knee hyperextension at the post-training session (on average the peak of the knee extension angle was reduced by 36%). Knee flexion during swing phase increased, by 16% and 31%, for A and B groups respectively. Two-day gait training with APO providing iHA was effective and safe in improving walking performance and knee kinematics in ABI survivors. These preliminary findings suggest that this strategy may be viable for subject-specific post-ABI gait rehabilitation
    • …
    corecore