528 research outputs found

    LMO2 and IL2RG synergize in thymocytes to mimic the evolution of SCID-X1 gene therapy-associated T-cell leukaemia

    Get PDF
    The SCID-X1 disease occurs in males that lack a functional X-linked gene encoding the interleukin 2 receptor subunit gamma (IL2RG) and thus are immuno-deficient (reviewed in Rochman et al.). Gene therapy has been a success in curing SCID-X1 in patients receiving autologous CD34+-bone marrow cells infected with retroviruses expressing IL2RG. This treatment protocol has, however, produced adverse T-cell effects where clonal T-cell leukaemias arose, and four have insertional mutagenesis of the T-cell oncogene LMO2. LMO2 is a T-cell oncogene first discovered via chromosomal translocations in T-cell acute leukaemia (T-ALL) (reviewed in Chambers and Rabbitts). It is unclear if the T-cell neoplasias in the SCID-X1 patients are simply due to insertional activation of the LMO2 gene or reflect synergy between LMO2 and IL2RG. Further, the recurrent involvement of LMO2 in SCID-X1 leukaemias is puzzling as other T-cell oncogenes (for example, TAL1/SCL, HOX11 and LYL1) might equally have been targets. This suggests that specific properties of LMO2 per se are required in these adverse events. The oncogenic potential of IL2RG itself also remains controversial. Although it causes T-cell lymphomas in mice transplanted with virally transduced haematopoetic stem cells, other studies have indicated that IL2RG is not an oncogene. Here we provide evidence that synergy is required between LMO2 and IL2RG proteins specifically in the T-cell lineage to elicit neoplasias and that additional mutations are required such as Notch1 mutations like those in human T-ALL

    Kinetic models of heterogeneous dissipation

    Full text link
    We suggest kinetic models of dissipation for an ensemble of interacting oriented particles, for example, moving magnetized particles. This is achieved by introducing a double bracket dissipation in kinetic equations using an oriented Poisson bracket, and employing the moment method to derive continuum equations for magnetization and density evolution. We show how our continuum equations generalize the Debye-Hueckel equations for attracting round particles, and Landau-Lifshitz-Gilbert equations for spin waves in magnetized media. We also show formation of singular solutions that are clumps of aligned particles (orientons) starting from random initial conditions. Finally, we extend our theory to the dissipative motion of self-interacting curves.Comment: 28 pages, 2 figures. Submitted to J. Phys.

    An insight into the suspected HbA2' cases detected by high performance liquid chromatography in Pakistan

    Get PDF
    Background:Hemoglobin A2\u27 (delta 16 Gly Arg) is globally the commonest delta chain variant of HbA2. It is clinically and hematologically silent but its sole importance lies in the underestimation of HbA2 quantity during the workup of beta-thalassaemia trait. High performance liquid chromatography (HPLC) identifies it as a small S-window peak with a mean retention time of 4.59 0.03 minutes. This study aims at describing the frequency of detection of HbA2\u27 by HPLC in Pakistan and its confirmation at a molecular level. Potential HbA2\u27 cases were identified by a retrospective review of 10186 HPLC chromatograms in year 2006. Prospective samples were collected for polymerase chain reaction (PCR) amplification, restriction digestion and nucleotide sequencing. Findings: One hundred and ninety two potential cases (1.89%) of HbA2\u27 were detected on HPLC, having mean retention time of 4.59 0.05 minutes. Sixty four (0.6%) new cases were suspected of having co-existing beta-thalassaemia trait when the quantity of S-window peaks was taken into account. Thirteen samples with presumed HbA2\u27 on HPLC were subjected to molecular analysis and the said mutation (delta 16 GGC CGC) was not detected in any sample. Conclusion: It is concluded that diagnosis of HbA2\u27 on HPLC alone is not justified, as evidence of the presence of this delta chain variant in Pakistani population is yet to be proven. Such small S-window peaks should be either disregarded or confirmed at molecular level, and only then should influence the diagnosis of beta-thalassaemia trait. Further studies are required to determine the true nature of these peaks

    Longitudinal Spin Transfer to Λ\Lambda and Λˉ\bar{\Lambda} Hyperons in Polarized Proton-Proton Collisions at s\sqrt{s} = 200 GeV

    Get PDF
    The longitudinal spin transfer, DLLD_{LL}, from high energy polarized protons to Λ\Lambda and Λˉ\bar{\Lambda} hyperons has been measured for the first time in proton-proton collisions at s=200GeV\sqrt{s} = 200 \mathrm{GeV} with the STAR detector at RHIC. The measurements cover pseudorapidity, η\eta, in the range η<1.2|\eta| < 1.2 and transverse momenta, pTp_\mathrm{T}, up to 4GeV/c4 \mathrm{GeV}/c. The longitudinal spin transfer is found to be DLL=0.03±0.13(stat)±0.04(syst)D_{LL}= -0.03\pm 0.13(\mathrm{stat}) \pm 0.04(\mathrm{syst}) for inclusive Λ\Lambda and DLL=0.12±0.08(stat)±0.03(syst)D_{LL} = -0.12 \pm 0.08(\mathrm{stat}) \pm 0.03(\mathrm{syst}) for inclusive Λˉ\bar{\Lambda} hyperons with =0.5 = 0.5 and =3.7GeV/c = 3.7 \mathrm{GeV}/c. The dependence on η\eta and pTp_\mathrm{T} is presented.Comment: 5 pages, 4 figure

    An Experimental Exploration of the QCD Phase Diagram: The Search for the Critical Point and the Onset of De-confinement

    Full text link
    The QCD phase diagram lies at the heart of what the RHIC Physics Program is all about. While RHIC has been operating very successfully at or close to its maximum energy for almost a decade, it has become clear that this collider can also be operated at lower energies down to 5 GeV without extensive upgrades. An exploration of the full region of beam energies available at the RHIC facility is imperative. The STAR detector, due to its large uniform acceptance and excellent particle identification capabilities, is uniquely positioned to carry out this program in depth and detail. The first exploratory beam energy scan (BES) run at RHIC took place in 2010 (Run 10), since several STAR upgrades, most importantly a full barrel Time of Flight detector, are now completed which add new capabilities important for the interesting physics at BES energies. In this document we discuss current proposed measurements, with estimations of the accuracy of the measurements given an assumed event count at each beam energy.Comment: 59 pages, 78 figure

    Measurements of Dihadron Correlations Relative to the Event Plane in Au+Au Collisions at sNN=200\sqrt{s_{NN}}=200 GeV

    Full text link
    Dihadron azimuthal correlations containing a high transverse momentum (\pt) trigger particle are sensitive to the properties of the nuclear medium created at RHIC through the strong interactions occurring between the traversing parton and the medium, i.e. jet-quenching. Previous measurements revealed a strong modification to dihadron azimuthal correlations in Au+Au collisions with respect to \pp\ and \dAu\ collisions. The modification increases with the collision centrality, suggesting a path-length dependence to the jet-quenching effect. This paper reports STAR measurements of dihadron azimuthal correlations in mid-central (20-60\%) Au+Au collisions at \snn=200~GeV as a function of the trigger particle's azimuthal angle relative to the event plane, \phis=|\phit-\psiEP|. The azimuthal correlation is studied as a function of both the trigger and associated particle \pt. The subtractions of the combinatorial background and anisotropic flow, assuming Zero Yield At Minimum (\zyam), are described. The away-side correlation is strongly modified, and the modification varies with \phis, which is expected to be related to the path-length that the away-side parton traverses. The pseudo-rapidity (\deta) dependence of the near-side correlation, sensitive to long range \deta correlations (the ridge), is also investigated. The ridge and jet-like components of the near-side correlation are studied as a function of \phis. The ridge appears to drop with increasing \phis while the jet-like component remains approximately constant. ...Comment: 50 pages, 39 figures, 6 table

    Studies of di-jet survival and surface emission bias in Au+Au collisions via angular correlations with respect to back-to-back leading hadrons

    Get PDF
    We report first results from an analysis based on a new multi-hadron correlation technique, exploring jet-medium interactions and di-jet surface emission bias at RHIC. Pairs of back-to-back high transverse momentum hadrons are used for triggers to study associated hadron distributions. In contrast with two- and three-particle correlations with a single trigger with similar kinematic selections, the associated hadron distribution of both trigger sides reveals no modification in either relative pseudo-rapidity or relative azimuthal angle from d+Au to central Au+Au collisions. We determine associated hadron yields and spectra as well as production rates for such correlated back-to-back triggers to gain additional insights on medium properties.Comment: By the STAR Collaboration. 6 pages, 2 figure

    System size and energy dependence of near-side di-hadron correlations

    Get PDF
    Two-particle azimuthal (Δϕ\Delta\phi) and pseudorapidity (Δη\Delta\eta) correlations using a trigger particle with large transverse momentum (pTp_T) in dd+Au, Cu+Cu and Au+Au collisions at sNN\sqrt{s_{{NN}}} =\xspace 62.4 GeV and 200~GeV from the STAR experiment at RHIC are presented. The \ns correlation is separated into a jet-like component, narrow in both Δϕ\Delta\phi and Δη\Delta\eta, and the ridge, narrow in Δϕ\Delta\phi but broad in Δη\Delta\eta. Both components are studied as a function of collision centrality, and the jet-like correlation is studied as a function of the trigger and associated pTp_T. The behavior of the jet-like component is remarkably consistent for different collision systems, suggesting it is produced by fragmentation. The width of the jet-like correlation is found to increase with the system size. The ridge, previously observed in Au+Au collisions at sNN\sqrt{s_{{NN}}} = 200 GeV, is also found in Cu+Cu collisions and in collisions at sNN\sqrt{s_{{NN}}} =\xspace 62.4 GeV, but is found to be substantially smaller at sNN\sqrt{s_{{NN}}} =\xspace 62.4 GeV than at sNN\sqrt{s_{{NN}}} = 200 GeV for the same average number of participants (Npart \langle N_{\mathrm{part}}\rangle). Measurements of the ridge are compared to models.Comment: 17 pages, 14 figures, submitted to Phys. Rev.

    Observation of the antimatter helium-4 nucleus

    Get PDF
    High-energy nuclear collisions create an energy density similar to that of the universe microseconds after the Big Bang, and in both cases, matter and antimatter are formed with comparable abundance. However, the relatively short-lived expansion in nuclear collisions allows antimatter to decouple quickly from matter, and avoid annihilation. Thus, a high energy accelerator of heavy nuclei is an efficient means of producing and studying antimatter. The antimatter helium-4 nucleus (4Heˉ^4\bar{He}), also known as the anti-{\alpha} (αˉ\bar{\alpha}), consists of two antiprotons and two antineutrons (baryon number B=-4). It has not been observed previously, although the {\alpha} particle was identified a century ago by Rutherford and is present in cosmic radiation at the 10% level. Antimatter nuclei with B < -1 have been observed only as rare products of interactions at particle accelerators, where the rate of antinucleus production in high-energy collisions decreases by about 1000 with each additional antinucleon. We present the observation of the antimatter helium-4 nucleus, the heaviest observed antinucleus. In total 18 4Heˉ^4\bar{He} counts were detected at the STAR experiment at RHIC in 109^9 recorded Au+Au collisions at center-of-mass energies of 200 GeV and 62 GeV per nucleon-nucleon pair. The yield is consistent with expectations from thermodynamic and coalescent nucleosynthesis models, which has implications beyond nuclear physics.Comment: 19 pages, 4 figures. Submitted to Nature. Under media embarg

    Inclusive pi^0, eta, and direct photon production at high transverse momentum in p+p and d+Au collisions at sqrt(s_NN) = 200 GeV

    Get PDF
    We report a measurement of high-p_T inclusive pi^0, eta, and direct photon production in p+p and d+Au collisions at sqrt(s_NN) = 200 GeV at midrapidity (0 gamma gamma were detected in the Barrel Electromagnetic Calorimeter of the STAR experiment at the Relativistic Heavy Ion Collider. The eta -> gamma gamma decay was also observed and constituted the first eta measurement by STAR. The first direct photon cross section measurement by STAR is also presented, the signal was extracted statistically by subtracting the pi^0, eta, and omega(782) decay background from the inclusive photon distribution observed in the calorimeter. The analysis is described in detail, and the results are found to be in good agreement with earlier measurements and with next-to-leading order perturbative QCD calculations.Comment: 28 pages, 30 figures, 6 tables, the updated version that was accepted by Phys. Rev.
    corecore