974 research outputs found

    A Preliminary Comparison of the Mechanical Properties of Chemically Cured and Ultrasonically Cured Glass Ionomer Cements, using Nano-Indentation Techniques

    Get PDF
    There is a requirement for a dental cement with properties comparable or superior to conventional glass ionomer cements (GICs) but with the command set properties of the resin modified GICs. The objective of this work was to show that the application of ultrasound to conventional Fuji IX commercial glass ionomer cement imparts a command set, whilst improving the short-term surface mechanical properties. Nano-indentation techniques were employed to highlight the improvements in hardness and creep resistance imparted to the cement through the application of ultrasound. The instant set imparted by the application of ultrasound provides improved surface hardness and creep, particularly within the first 24h after setting. The surface hardness of the chemically cured Fuji IX (176MPa) increased by an order of magnitude when set ultrasonically (2620MPa), whilst creep reduced to a negligible amount. Rapid setting allows for shorter chair time and an improved clinical technique, making restorations more convenient for both the patient and clinician. Copyright © 2001 Elsevier Science Ltd

    'Educating an army': Australian army doctrinal development and the operational experience in South Vietnam, 1965-72

    Get PDF
    This monograph examines the way in which the Australian Army met the challenges to its doctrine presented by the Vietnam War. The war produced some widely varied tactical problems, and the flexibility and deep experience which were the hallmarks of the army in the 1960s provide the key to understanding how these problems were solved. After surveying the origins of the Australian Army's counter-revolutionary warfare doctrine, the monograph examines in detail the challenges to and development of this doctrine in the four periods of Australia's involvement in the Vietnam War: working alongside US forces (May 1965-June 1966); the establishment of the independent task force (May 1966-January 1968); the period of 'out of province' operations (January 1968-June 1969); and the final period of Vietnamisation and pacification. The developments in tactics and doctrine of the Vietnam War period marked a substantial step in the process of developing Australian Army doctrine - a process which is worthy of study as, at the turn of the century, the army develops new doctrine and concepts to meet the challenges of the future

    Interactions between magnetohydrodynamic shear instabilities and convective flows in the solar interior

    Get PDF
    Motivated by the interface model for the solar dynamo, this paper explores the complex magnetohydrodynamic interactions between convective flows and shear-driven instabilities. Initially, we consider the dynamics of a forced shear flow across a convectively-stable polytropic layer, in the presence of a vertical magnetic field. When the imposed magnetic field is weak, the dynamics are dominated by a shear flow (Kelvin-Helmholtz type) instability. For stronger fields, a magnetic buoyancy instability is preferred. If this stably stratified shear layer lies below a convectively unstable region, these two regions can interact. Once again, when the imposed field is very weak, the dynamical effects of the magnetic field are negligible and the interactions between the shear layer and the convective layer are relatively minor. However, if the magnetic field is strong enough to favour magnetic buoyancy instabilities in the shear layer, extended magnetic flux concentrations form and rise into the convective layer. These magnetic structures have a highly disruptive effect upon the convective motions in the upper layer.Comment: 11 pages, 10 figures, accepted for publication in MNRA

    Dynamo models and differential rotation in late-type rapidly rotating stars

    Full text link
    Increasing evidence is becoming available about not only the surface differential rotation of rapidly rotating cool stars but, in a small number of cases, also about temporal variations, which possibly are analogous to the solar torsional oscillations. Given the present difficulties in resolving the precise nature of such variations, due to both the short length and poor resolution of the available data, theoretical input is vital to help assess the modes of behaviour that might be expected, and will facilitate interpretation of the observations. Here we take a first step in this direction by studying the variations in the convection zones of such stars, using a two dimensional axisymmetric mean field dynamo model operating in a spherical shell in which the only nonlinearity is the action of the azimuthal component of the Lorentz force of the dynamo generated magnetic field on the stellar angular velocity. We consider three families of models with different depths of dynamo-active regions. For moderately supercritical dynamo numbers we find torsional oscillations that penetrate all the way down to the bottom of the convection zones, similar to the case of the Sun. For larger dynamo numbers we find fragmentation in some cases and sometimes there are other dynamical modes of behaviour, including quasi-periodicity and chaos. We find that the largest deviations in the angular velocity distribution caused by the Lorentz force are of the order of few percent, implying that the original assumed `background' rotation field is not strongly distorted.Comment: Astronomy and Astrophysics, in pres

    The solar differential rotation in the 18th century

    Full text link
    The sunspot drawings of Johann Staudacher of 1749--1799 were used to determine the solar differential rotation in that period. These drawings of the full disk lack any indication of their orientation. We used a Bayesian estimator to obtain the position angles of the drawings, the corresponding heliographic spot positions, a time offset between the drawings and the differential rotation parameter \delta\Omega, assuming the equatorial rotation period is the same as today. The drawings are grouped in pairs, and the resulting marginal distributions for \delta\Omega were multiplied. We obtain \delta\Omega=-0.048 \pm 0.025 d^-1 (-2.75^o/d) for the entire period. There is no significant difference to the value of the present Sun. We find an (insignificant) indication for a change of \delta\Omega throughout the observing period from strong differential rotation, \delta\Omega\approx -0.07 d^-1, to weaker differential rotation, \delta\Omega\approx-0.04 d^-1.Comment: 6 pages, 6 figures, accepted for Astronomy and Astrophysic

    Reversible metallisation of soft UV patterned substrates

    Get PDF
    Soft UV (365 nm) patterning of ortho-nitrobenzyl functionalized thiol-on-gold self-assembled monolayers (SAMs) using acid catalysis, produces surfaces which can be used for the selective electro-deposition of copper. Exploiting the difference in the reduction peak potential between the photolysed and the masked regions of the SAM allows copper to be deposited selectively on those areas that have been exposed to the light. The copper can be removed by raising the electrode potential. The process is fully reversible so that depositing a pattern of copper, and removing it again is something that can be repeated many times. The copper deposited on the photolysed regions, like copper deposited on bare gold, forms a film of copper oxide, and so it is presumably formed on top of the SAM. Preliminary results for two-photon photocleavage show that it is also possible to implement patterning with sub-wavelength features

    Convective intensification of magnetic fields in the quiet Sun

    Get PDF
    Kilogauss-strength magnetic fields are often observed in intergranular lanes at the photosphere in the quiet Sun. Such fields are stronger than the equipartition field B_e, corresponding to a magnetic energy density that matches the kinetic energy density of photospheric convection, and comparable with the field B_p that exerts a magnetic pressure equal to the ambient gas pressure. We present an idealised numerical model of three-dimensional compressible magnetoconvection at the photosphere, for a range of values of the magnetic Reynolds number. In the absence of a magnetic field, the convection is highly supercritical and is characterised by a pattern of vigorous, time-dependent, “granular” motions. When a weak magnetic field is imposed upon the convection, magnetic flux is swept into the convective downflows where it forms localised concentrations. Unless this process is significantly inhibited by magnetic diffusion, the resulting fields are often much greater than B_e, and the high magnetic pressure in these flux elements leads to their being partially evacuated. Some of these flux elements contain ultra-intense magnetic fields that are significantly greater than B_p. Such fields are contained by a combination of the thermal pressure of the gas and the dynamic pressure of the convective motion, and they are constantly evolving. These ultra-intense fields develop owing to nonlinear interactions between magnetic fields and convection; they cannot be explained in terms of “convective collapse” within a thin flux tube that remains in overall pressure equilibrium with its surroundings
    corecore