22 research outputs found
Private and Communication-Efficient Algorithms for Entropy Estimation
Modern statistical estimation is often performed in a distributed setting where each sample belongs to a single user who shares their data with a central server. Users are typically concerned with preserving the privacy of their samples, and also with minimizing the amount of data they must transmit to the server. We give improved private and communication-efficient algorithms for estimating several popular measures of the entropy of a distribution. All of our algorithms have constant communication cost and satisfy local differential privacy. For a joint distribution over many variables whose conditional independence is given by a tree, we describe algorithms for estimating Shannon entropy that require a number of samples that is linear in the number of variables, compared to the quadratic sample complexity of prior work. We also describe an algorithm for estimating Gini entropy whose sample complexity has no dependence on the support size of the distribution and can be implemented using a single round of concurrent communication between the users and the server. In contrast, the previously best-known algorithm has high communication cost and requires the server to facilitate interaction between the users. Finally, we describe an algorithm for estimating collision entropy that matches the space and sample complexity of the best known algorithm but generalizes it to the private and communication-efficient setting
BoostingTree: parallel selection of weak learners in boosting, with application to ranking
Boosting algorithms have been found successful in many areas of machine learning and, in particular, in ranking. For typical classes of weak learners used in boosting (such as decision stumps or trees), a large feature space can slow down the training, while a long sequence of weak hypotheses combined by boosting can result in a computationally expensive model. In this paper we propose a strategy that builds several sequences of weak hypotheses in parallel, and extends the ones that are likely to yield a good model. The weak hypothesis sequences are arranged in a boosting tree, and new weak hypotheses are added to promising nodes (both leaves and inner nodes) of the tree using some randomized method. Theoretical results show that the proposed algorithm asymptotically achieves the performance of the base boosting algorithm applied. Experiments are provided in ranking web documents and move ordering in chess, and the results indicate that the new strategy yields better performance when the length of the sequence is limited, and converges to similar performance as the original boosting algorithms otherwise. © 2013 The Author(s)
A network-based target overlap score for characterizing drug combinations: High correlation with cancer clinical trial results
Drug combinations are highly efficient in systemic treatment of complex multigene diseases such as cancer, diabetes, arthritis and hypertension. Most currently used combinations were found in empirical ways, which limits the speed of discovery for new and more effective combinations. Therefore, there is a substantial need for efficient and fast computational methods. Here, we present a principle that is based on the assumption that perturbations generated by multiple pharmaceutical agents propagate through an interaction network and can cause unexpected amplification at targets not immediately affected by the original drugs. In order to capture this phenomenon, we introduce a novel Target Overlap Score (TOS) that is defined for two pharmaceutical agents as the number of jointly perturbed targets divided by the number of all targets potentially affected by the two agents. We show that this measure is correlated with the known effects of beneficial and deleterious drug combinations taken from the DCDB, TTD and Drugs.com databases. We demonstrate the utility of TOS by correlating the score to the outcome of recent clinical trials evaluating trastuzumab, an effective anticancer agent utilized in combination with anthracycline- and taxane-based systemic chemotherapy in HER2-receptor (erb-b2 receptor tyrosine kinase 2) positive breast cancer. © 2015 Ligeti et al
Preference-Based Monte Carlo Tree Search
Monte Carlo tree search (MCTS) is a popular choice for solving sequential
anytime problems. However, it depends on a numeric feedback signal, which can
be difficult to define. Real-time MCTS is a variant which may only rarely
encounter states with an explicit, extrinsic reward. To deal with such cases,
the experimenter has to supply an additional numeric feedback signal in the
form of a heuristic, which intrinsically guides the agent. Recent work has
shown evidence that in different areas the underlying structure is ordinal and
not numerical. Hence erroneous and biased heuristics are inevitable, especially
in such domains. In this paper, we propose a MCTS variant which only depends on
qualitative feedback, and therefore opens up new applications for MCTS. We also
find indications that translating absolute into ordinal feedback may be
beneficial. Using a puzzle domain, we show that our preference-based MCTS
variant, wich only receives qualitative feedback, is able to reach a
performance level comparable to a regular MCTS baseline, which obtains
quantitative feedback.Comment: To be publishe
PHYLOGENETIC TREE BUIL DING USING A NOVEL COMPRESSION-BASED NON-SYMMETRIC DISSIMILARITY MEASURE
Fast boosting using adversarial bandits
http://www.machinelearning.orgInternational audienceIn this paper we apply multi-armed bandits (MABs) to improve the computational complexity of AdaBoost. AdaBoost constructs a strong classifier in a stepwise fashion by selecting simple base classifiers and using their weighted ''vote'' to determine the final classification. We model this stepwise base classifier selection as a sequential decision problem, and optimize it with MABs where each arm represents a subset of the base classifier set. The MAB gradually learns the ''usefulness'' of the subsets, and selects one of the subsets in each iteration. AdaBoost then searches only this subset instead of optimizing the base classifier over the whole space. The main improvement of this paper over a previous approach is that we use an adversarial bandit algorithm instead of stochastic bandits. This choice allows us to prove a weak-to-strong-learning theorem, which means that the proposed technique remains a boosting algorithm in a formal sense. We demonstrate on benchmark datasets that our technique can achieve a generalization performance similar to standard AdaBoost for a computational cost that is an order of magnitude smaller
