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Abstract Boosting algorithms have been found successful in many areas of ma-
chine learning and, in particular, in ranking. For typical classes of weak learners
used in boosting (such as decision stumps or trees), a large feature space can slow
down the training, while a long sequence of weak hypotheses combined by boost-
ing can result in a computationally expensive model. In this paper we propose a
strategy that builds several sequences of weak hypotheses in parallel, and extends
the ones that are likely to yield a good model. The weak hypothesis sequences
are arranged in a boosting tree, and new weak hypotheses are added to promising
nodes (both leaves and inner nodes) of the tree using some randomized method.
Theoretical results show that the proposed algorithm asymptotically achieves the
performance of the base boosting algorithm applied. Experiments are provided in
ranking web documents and move ordering in chess, and the results indicate that
the new strategy yields better performance when the length of the sequence is
limited, and converges to similar performance as the original boosting algorithms
otherwise.

Keywords Boosting · Random search · Ranking

1 Introduction

Boosting algorithms (Schapire 2002) have been found successful in many areas of
machine learning and, in particular, in ranking (Burges et al 2011). For typical
classes of weak learners used in boosting (such as decision stumps or trees), a large
feature space can slow down the training considerably. A natural way to accelerate
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the training is to limit the set of features accessible to the weak learner at certain
decision points. For example, when the weak learner attempts to create a decision
stump, the selection of feature is limited to a subset of all features (or even to
one particular feature). Such, an approach was followed by Busa-Fekete and Kégl
(2009, 2010) using multi-armed bandit algorithms (see, e.g., Auer et al 2002a,b)
to narrow the freedom of the weak learners.

Another drawback of boosting algorithms is that in order to improve on the
performance of individual weak learners, such algorithms tend to cumulate a long
sequence of (weak) hypotheses resulting in a computationally expensive model.
This problem is exacerbated when bandit algorithms are used to speed up the
training, since the exploring nature of bandit algorithms will include much weaker
hypotheses, and a larger number of these are needed to achieve similar perfor-
mance. One way to avoid the inclusion of poor hypotheses in the final ensemble
is to revisit some of these decisions later. In this way effectively a tree of weak
hypotheses (and their combination weights) is built, where, for any node, the path
from the root to the node determines a weighted sequence of hypotheses. The
number of possible children of a node is determined by the number of possible
next hypotheses to be chosen. While a standard boosting algorithms just selects
a hypothesis in each step, here first a node (a leaf or an inner node that does
not have the maximum number of children) has to be selected, and then a weak
hypothesis extending the hypothesis sequence leading to this node.

The above procedure essentially runs several (dependent) boosting algorithms
in parallel. This idea is very similar to improving local search algorithms by having
run several search instances in parallel. The latter problem is discussed in our pre-
vious paper (György and Kocsis 2011). There we proposed an efficient algorithm,
called MetaMax, that dynamically starts instances of a local search algorithm and
allocates resources to the instances based on their (potential) performance. The
major difference between the two problems is that in our current set-up new se-
quences are created from old ones, instead of starting each algorithm instance from
scratch, introducing serious inter-dependence between the different boosting runs.
Furthermore, the boosting methods considered must differ to produce different
hypothesis sequences. Therefore, constraints on selecting the next weak hypothe-
sis in each node at each time instant are necessary. In this paper, we propose a
new algorithm, BoostingTree, that borrows the core ideas behind selecting the
promising algorithm instances from the MetaMax algorithm, and adapts them to
the tree-based structure of hypotheses sequences.

While the proposed algorithm can be of interest in many applications of ma-
chine learning, ranking problems are particularly suited for this approach. First,
in many ranking problems, such as web search or move ordering in games, a fast
model is essential. Moreover, the ranking evaluation measures are notoriously non-
smooth, therefore virtually all learning algorithms optimize a different measure,
and combining these algorithms with a strategy that ’corrects’ their decisions
when alternative decisions could improve performance with respect to the ’real’
evaluation measure should only improve their performance.

The rest of the paper is organized as follows. Section 2 summarizes related
research. The proposed algorithm is described in Section 3, while theoretical con-
siderations are given in Section 3.1. Simulation results on web search benchmarks
and move ordering in chess are described in Section 4. Conclusions and future
work are provided in Section 5.
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2 Related work

The importance of restricting the number of hypotheses combined by boosting
was noted by Margineantu and Dietterich (1997), proposing several methods to
achieve this including early stopping, pruning techniques that aim to diversify the
hypotheses included in the final model (such as Kappa pruning), and the Reduce-
Error pruning that greedily adds hypotheses (from the larger pool) to reduce
error on a pruning (or validation) set. While the boosting pruning problem was
proven to be NP-complete by Tamon and Xiang (2000), several algorithms have
been proposed to select a small set of hypotheses from a larger ensemble (see e.g.
Mart́ınez-Muñoz et al 2009; Tsoumakas et al 2009 for an overview). It is worth
noting that most of the pruning algorithms are more effective when the ensembles
are created by bagging rather than boosting, although the latter provides a natural
ordering of the hypotheses (Mart́ınez-Muñoz et al 2009).

A more effective way of achieving good performance in boosting with a re-
duced number of hypotheses is through l1 regularization of the weights attached
to hypotheses, combined often with early stopping. This approach was chosen by,
for example, Xi et al (2009); Xiang and Ramadge (2009). While we believe that
l1 regularization can improve boosting algorithms for ranking problems as well,
adjusting these algorithms are out of the scope of this paper (moreover, such reg-
ularization can be used in addition to the BoostingTree algorithm as well) and
therefore we do not attempt to compare the proposed algorithm to these tech-
niques. For simplicity, we restrict our attention in the experimental work to early
stopping for limiting the number hypotheses, while keeping in mind that alterna-
tive approaches can improve any of the tested algorithms.

Accelerating the training of boosting algorithms was discussed by Escudero
et al (2000) proposing several algorithms, including LazyBoost that reduces the
set of features considered in each iteration to a random subset. Busa-Fekete and
Kégl (2009) improved on this algorithm by posing the feature selection as a multi-
armed bandit problem, and using the bandit algorithm UCB (Auer et al 2002a) to
focus the selection on more informative features while keeping some exploration
in the process. Since, the selection of features in subsequent boosting iterations is
non-stationary, Busa-Fekete and Kégl (2010) argued for the more sensible use of
adversarial bandit algorithms such as Exp3 (Auer et al 2002b). The latter will be
revisited in Section 4.

As we mentioned before, the BoostingTree algorithm is based on the Meta-

max algorithm (György and Kocsis 2011), an algorithm specifically designed to
speed up local search algorithms by running several search instances in paral-
lel. Therefore, it is natural to consider the alternatives to Metamax discussed by
György and Kocsis (2011) as alternatives to BoostingTree as well. In particular,
the bandit based approach by Streeter and Smith (2006) could be used to alternate
between boosting sequences, however, it is not clear how to adapt the algorithm
beyond selecting amongst sequences with a fixed start-up (such as varying the ini-
tial model). Luby et al (1993) proposed an anytime algorithm that, in our context,
would translate to running (possibly randomized) boosting algorithms repeatedly
and stopping them after a prescribed number of iterations (that varies from in-
stance to instance). While the algorithm would produce a plethora of hypothesis
sequences with varying length, some randomization needs to be introduced in the
boosting algorithm, otherwise all sequences would be just prefixes of the longest
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sequence. If, in the spirit of the experiments described by György and Kocsis
(2011), the sequences would vary only in the initial model that would limit the
improvement potential on later hypotheses.

The allocation strategy of the Metamax algorithm is inspired by the DIRECT

optimization algorithm of Jones et al (1993). Recently, Munos (2011) provided a
generalization of the DIRECT algorithm, called the simultaneous optimistic opti-
mization (SOO) algorithm. Both algorithms are designed to find the optimum of
a smooth function, without knowledge of the actual smoothness. In order to do
so, the algorithms build a search tree, partitioning the input space, where each
leaf node represents a set from the actual partition. Since the selection mecha-
nism of the MetaMax algorithm is based on that of the DIRECT algorithm, the
mechanism of Munos (2011) could also be used to improve MetaMax, and by
association, the BoostingTree algorithm. While the DIRECT and the SOO al-
gorithms build trees, just like BoostingTree, an important difference is that the
former algorithms build full trees, while the BoostingTree adds the children of a
node one by one.

While multi-armed bandit approaches to boosting have been discussed above,
it could be interesting to look at tree based variants of the bandit algorithms, such
as UCT (Kocsis and Szepesvári 2006). Some of our preliminary empirical analysis
(not reported in this paper) indicated that UCT would spend too much effort in
getting the first few hypotheses right (a natural behavior for games, where the
move in the current position has to be decided), and too little attention is paid
to subsequent weak learners that can have the same influence in the combined
performance. Nested Monte-Carlo search (Cazenave 2009) has been applied to
one-player games, and could be used for the same purpose as the BoostingTree

algorithm, but we leave the analysis of these Monte-Carlo algorithms for future
research.

Another approach that builds a tree of alternatives is the alternating decision
tree (ADT) algorithm (Freund and Mason 1999). While both ADT and Boost-

ingTree are applied to boosting, a major difference is that while in ADT the
constructed tree is one model, in our approach the leaves of the tree are individual
models.

3 The BoostingTree algorithm

In this paper we consider speeding up boosting algorithms. Given a set of instances
X , the goal of a boosting algorithm is to create a model M : X → R from weak
hypotheses (generated by weak learners) wj ∈ W, where W ⊂ {w : X → R} is
a set of weak hypotheses. Each x ∈ X is usually described by a feature vector,
and with a slight abuse of notation the feature vector representing x will also be
denoted by x. The goal of constructing the model can be any supervised learning
task; in this paper we will be concerned about creating models for ranking. The
model M is built iteratively in a linear fashion from the weak hypotheses: a model

M is an ensemble M =
Pl(M)

j=1 wj , where l(M) is the number of weak hypotheses
used in constructing M , which will often be referred to later as the ’length of the
boosting sequence’, and in each step of the algorithm a weak hypothesis wj is
added to the existing model. While typically a model is a weighted combination of
weak hypotheses, to simplify the notation we assume that the weight is already
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included in the hypotheses wi in the above formulation. The selection of the next
hypothesis depends on the current model M , the training data D, and optionally
on a constraint C that restricts the new weak hypothesis to be an element of a
restricted set WC ⊆ W. Thus, one step of the boosting algorithm A encapsulates
the reweighting of the data, the computation of a hypothesis by the weak learner
(subject to the constraint), and the weighting of the hypothesis. That is, if the

actual model is Mi =
Pl

j=1 wj , the next weak hypothesis selected by the standard
boosting algorithm is wi+1 = A(Mi, D).

As mentioned before, a single step of boosting algorithms may be speeded up
by imposing some constraint on the next weak hypothesis. Given a constraint
Ci, the constrained boosting algorithm A selects the next weak hypothesis wi+1 =
A(Mi, Ci, D) (the unconstrained version can be described in this way as A(Mi, ∅, D)).
A typical case is when the weak hypotheses are decision stumps (depending only on
a single feature of the observations), and the constraint Ci selects a single feature:
then the step A(Mi, Ci, D) is nothing but optimizing a weak learner wi+1 over the
set of decision stumps corresponding to the feature selected by Ci. We denote the
measure of the performance of the model M with data D by f(M, D). Throughout
this paper this measure will typically be some ranking measure f(M, D) = V (M, D)
that evaluates the model M on the particular dataset D, but the provided method
works for any other performance measure. Since it is possible that the performance
of a model is decreased by adding more weak hypotheses, we also define the func-
tion f̂ to be the maximum of the ranking measure over the possible prefixes of an
ensemble, that is,

f̂(M) = max
0≤j≤l(M)

f

0

@

j
X

i=1

wi, D

1

A .

While standard boosting algorithms typically produce a deterministic sequence
of weak learners (for a given data D), allowing several different constraint values
for each model leads to a tree: the edges of the tree correspond to (weighted) weak
hypotheses, while any node in the tree is a model that sums the hypotheses that
are on the path from the root to the node. Assuming constraints C1, . . . , Ck can
be selected at a node M , the children of M correspond to the weak hypotheses
{A(M, Ci, D)}i=1,...,k as edges. Assuming the available constraints at each node
are fixed in advance, the tree can be built in several ways. In this section we
propose an algorithm, called BoostingTree, that provides a systematic way of
exploring the tree. The key component of BoostingTree is the way it selects the
nodes (i.e., the models) to extend with a new hypothesis. Before describing this
selection mechanism, we first revisit the MetaMax algorithm (György and Kocsis
2011) that forms the basis of the selection procedure.

The goal of the MetaMax algorithm is to find a maximizer x∗ of a function f ,
using a given local search algorithm. As we discussed in the introduction, Meta-

Max runs several instances of the local search algorithm in parallel, and allocates
in every step additional resources to the most promising instances. The key idea
of MetaMax is the assumption of bounding the convergence of the local search
instances by a function cg(n), where n is the number of steps taken by the lo-
cal search algorithm, g is typically an exponential function, and c is an unknown
constant. The algorithm then steps every local search instance that has the high-
est optimistic bound (the actual best value plus the confidence bound cg(n)) on
the performance for some particular range of values of c. The idea behind the
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algorithm, first introduced in the context of Lipschitz optimization without the
knowledge of the Lipschitz constant (Jones et al 1993), is that if the convergence
rate g(n) is only known up to a constant factor, then instead of selecting an ar-
bitrary value of this constant, all algorithms are considered that are optimal for
some values of the constant. As the function g is also unknown, it is replaced by a
sequence of functions {hr} chosen such that it aids the convergence of the Meta-

Max algorithm. The MetaMax algorithm is shown in Figure 1, for completeness.
At the beginning of each round r, a new instance is created randomly (instance
Ar), and the most promising instances are selected in step (b), where ni denotes
the number of steps made by Ai, f̂i is its current estimate of the optimum, and
f̂i + ĉhr(ni) is the optimistic estimate on the performance of Ai with assumed con-
vergence rate ĉhr(n) (note that both ni and f̂i may change from round to round).
The selection procedure will be explained in more details in the context of the
BoostingTree algorithm. The most promising algorithms are selected and used
to make another step. Finally, in step (c’), it is ensured that the instance with the
currently best estimate of the optimum makes the most steps. While introducing
this step does not have much effect in practice (typically, if the best algorithm
is not the one with the most steps, its step number would increase very quickly
in short rounds, even without (c’)), it helps the algorithm in certain pathological
cases, and also aids its theoretical analysis (see György and Kocsis 2011 for a more
detailed discussion).

The boosting tree algorithm employs this idea in the node selection procedure.
Nodes (models) are added to the tree in rounds. In each round r, for each node
Mi already added to the tree, the performance of Mi is evaluated as f̂i = f̂i(Mi),
and an estimate of the potential performance of extending Mi is formed as

f̂i + ĉhr(ni) (1)

where hr is some decreasing positive function (typically exponential) and ni is the
cumulative length of Mi, which is defined as the sum of the length of the model Mi

and the number of children of Mi already in the tree. Then the algorithm expands
those nodes which maximize the performance estimate (1) for some values of ĉ.
While it may seem that almost all models will be selected in this way (for different
values of ĉ), it is easy to see that exactly those models are selected that lie on the
corners of the upper convex hull H of the set of points {(hr(ni), f̂i)}∪{(0,maxi f̂i)}
where i ranges over all models Mi that are already in the tree, see Figure 2 (the
reason for this is that f̂i + ĉ(hr(ni) − x) is a tangent line of H if i maximizes (1)
for ĉ).

Thinking of a sequence of weak hypotheses as a local search algorithm, the
above selection rule for leafs is the same as that of the MetaMax algorithm, as
for leaf nodes the cumulative length is exactly the number of hypotheses in the
corresponding model. For internal nodes some adjustment needs to be made to
avoid excessive attention to models that are hard to improve: Note that for many
local search algorithms, including boosting, there are situations when the current
model can only be improved slightly or cannot be improved at all by a single step.
Then, if hr sufficiently prefers lower complexity models (i.e., ensembles that are
sums of fewer hypotheses), and we considered the model length instead of the
cumulative length, a hardly improvable model would typically be selected if at
least one of its children were selected. Our solution to this problem is to introduce
the notion of cumulative length of a node, which is the length of the path to the
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MetaMax: A multi-start strategy with infinitely many algorithm
instances.

Parameters: {hr}, a set of positive, monotone decreasing functions with
limn→∞ hr(n) = 0.
For each round r = 1, 2, . . .

(a) Initialize algorithm Ar by choosing uniformly random starting point Xi,0,

evaluating f(Xi,0), and by setting nr = 0, f̂r = f(Xi,0).
(b) For i = 1, . . . , r − 1 select algorithm Ai if there exists a ĉ > 0 such that

f̂i + ĉhr−1(ni) > f̂j + ĉhr−1(nj)

for all j = 1, . . . , r − 1 such that (ni, f̂i) 6= (nj , f̂j). If there are several
values of i selected that have the same step number ni then keep only
one of these that has the smallest index.

(c) Step each selected Ai obtaining the sample point Xi,ni
, and update vari-

ables. That is, for each selected Ai, set ni = ni + 1, evaluate f(Xi,ni
)

and if f(Xi,ni
) > f̂i then set X̂i = Xi,ni

, f̂i = f(Xi,ni
).

(c’) Let Ir = argmaxi=1,...,r f̂i denote the index of the algorithm with the
currently largest estimate of f∗ (in case Ir is not unique, choose the one
with the smallest number of steps ni). If Ir 6= Ir−1, step algorithm AIr
(nIr−1

−nIr +1) times and set nIr = nIr−1
+1, and f̂Ir and XIr as the

largest value of f and its location, respectively, encountered by algorithm
AIr .

(d) Estimate the location of the maximum with X̂r = X̂Ir and its value with

f̂r = f̂Ir .

Fig. 1 The MetaMax algorithm. The algorithm attempts to maximize a real-valued function
f(X) with the help of local search instances Ai that differ in their initial point Xi,0. The
algorithm allocates further time to instances that appear more promising (step (b) and (c))
and gives high priority to instances that suddenly provide the best estimate having being less
promising previously (step (c’)). New instances are started in every round (step (a)).

node plus the number of children of the node. Intuitively, this modification yields
that the probability of expanding a child of a node (even with a higher potential
than other far descendants, grandchildren and more) decreases as more and more
children of a given node are expanded.

The BoostingTree algorithm is shown in Figure 3. Note that for a model
Mi, li denotes the depth of the corresponding node, the cumulative (or extended)
length ni is the depth plus the number of children already generated, fi is the
actual performance of the model, f̂i is the performance of the best ancestor of Mi.
Furthermore, tr−1 is the number of models in the tree generated before round r.
Note that, unlike to the MetaMax algorithm, most values defined in the algorithm
are static, and only the cumulative length variables ni depend implicitly on r, for
example, fi and f̂i remain unchanged once node i is created.

The algorithm starts with an empty tree, and in every phase expands the nodes
that have the potential of leading to the highest performing model (step (a)).
For each selected node, a constraint is set on the weak learners and the selected
node is extended by a new hypotheses according to the boosting algorithm. The
variables of the selected node and the new node are updated according to step
(b). The final step (c) enforces after each iteration that we expand the model
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Fig. 2 Selecting models for expansion in BoostingTree: the points represent the models,
and the models that lie on the corners of the upper convex hull (drawn with dashed blue lines)
are selected.

with best ranking measure until it leads to the longest path in the tree, an idea
also borrowed from the MetaMax algorithm. Although this last step usually does
not influence strongly the algorithm, it slightly speeds up the convergence when
a new and shorter ‘leader’ is found (in fact, if such a step would not be present
such an ‘overtake’ would be followed by very short phases, until the leading path
is expanded for a sufficient number of times). Furthermore, this step helps to
handle some pathological situations, and simplifies the theoretical analysis of the
algorithm.

Note that one could also try to approach the problem by running several in-
stances of a boosting algorithm independently (with some randomization or with a
diverse set of constraints applied for the different runs) to obtain efficient models.
Then, for example, one could run these instances in parallel, and use the Meta-

Max algorithm to select which instances should be continued. However, such an
approach would neglect the strong correspondence between the different runs. Tak-
ing into account these correspondences leads to the tree structure and the Boost-

ingTree algorithm described above. One can, of course, run MetaMax over runs
of different boosting algorithms (including even BoostingTree), but this is an
orthogonal issue and is beyond the scope of the present paper.

3.1 Some theoretical results

In this section we provide some basic properties of the BoostingTree algorithm,
following the analog analysis for the MetaMax algorithm (György and Kocsis
2011). First note that the base boosting algorithm A used inside BoostingTree

would provide a sequence of models MA
r = Mr−1+A(Mr−1, ∅, D), r = 1, 2, . . . (with

M0 = ∅), thus, in each iteration of the algorithm, the model is augmented with
a weak hypothesis computed without any constraints. It is reasonable to expect
that our BoostingTree algorithm can mimic the performance of A if a node is
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Parameters: {hr}, a set of positive, monotone decreasing functions with
limn→∞ hr(n) = 0, training data D.

Initialization: M0 = ∅, t0 = 1, f̂0 = 0, n0 = 0, and l0 = 0.
For each round r = 1, 2, . . .

(a) For i = 0, . . . , tr−1 select model Mi if there exists a ĉ > 0 such that

f̂i + ĉhr−1(ni) > f̂j + ĉhr−1(nj)

for all j = 0, . . . , r such that (ni, f̂i) 6= (nj , f̂j). If there are several values
of i selected that have the same cumulative length ni then keep only the
one with the smallest length li, and in case of tie, with the highest fi.

(b) Set tr = tr−1. For each selected Mi:
– set tr = tr + 1
– select constraint Ctr
– compute weak hypothesis wtr = A(Mi, Ctr , D)
– construct new model Mtr = Mi + wtr
– evaluate the new model: ftr = V (Mtr , D), f̂tr = max(f̂i, ftr )
– compute (and update) length variables: ni = ni+1, ntr = li+1, ltr =
li + 1

(c) Let Ir = argmaxi=1,...,tr
f̂i denote the index of the algorithm with the

currently largest value of f̂i (in case Ir is not unique, choose the one with
the largest length li). While either there exists j 6= Ir such that lIr ≤ lj or
MIr has not been expanded in the current round, select MIr and proceed
as in step (b) and repeat the current step (step (c)).

Fig. 3 The BoostingTree algorithm.

expanded sufficiently many times, that is, a sufficiently rich set of constraints are
used in the selection process. The following assumption ensures this property.

Assumption 1 For any node M of the BoostingTree assume that the node can

have only finitely many children, each defined by a different constraint, such that for

one of these constraints, C, we have A(M,C, D) = A(M, ∅, D).

It is easy to see by induction that the above assumption implies that the
full infinite boosting tree (where each node has its maximum number of children)
contains all the models MA

r generated by the boosting algorithm A such that MA
r+1

is a child of MA
r , for each r = 0, 1,2, . . ..

Furthermore, notice that the selection procedure (a) implies that a model Mi

with the smallest step number ni is always selected (for the largest values of ĉ).
Since each node can have only a finite number of children, for any n there is a
bounded number of nodes in the tree whose step number can be at most n (if a
node at depth l can have at most k children, then its step number is always at
most l + k). This implies that each node of the infinite boosting tree is expanded
by a maximum number of times if BoostingTree is run for a sufficiently long
time.

The above two facts imply the following consistency result:

Theorem 1 Suppose Assumption 1 holds. Then any model MA
r generated by the orig-

inal boosting algorithm A is also generated by the BoostingTree algorithm if it is run
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for a sufficiently long time. As a consequence, the asymptotic training performance of

BoostingTree is at least as good as that of A: limr→∞ f̂(MIr
) ≥ limr→∞ f̂(MA

r ).1

The goal of BoostingTree is to find the best model possible on the training
data. Since it is not clear which constraints are going to be the most relevant,
the algorithm tries to explore several paths in the boosting tree while keeping the
most promising ones as long as possible (in an ideal setting the algorithm would
explore just the optimal path, spending all resources on it, not wasting effort on
suboptimal combinations of weak hypotheses).

The trade-off in this exploration-exploitation problem can be best analyzed by
evaluating the length of MIr

, that is, how many weak hypotheses are combined in
MIr

at the end of round r. Note that MIr
is the longest extension of the actually

best model of the boosting tree (which is typically also the actually best model);
therefore we will refer to MIr

as the best leaf-model of the tree. The following
theorem shows that the length lIr

of MIr
is of the order of the square root of

tr, the total number of times a weak hypothesis is computed in BoostingTree

(note that the number of nodes in the tree is tr + 1). The proof of this result
is a straightforward modification of that of Theorem 15 of (György and Kocsis
2011). Note that in practice we have found that the BoostingTree algorithm
behaves better in the sense that the length of MIr

is typically much larger, about
Ω(tr/ ln tr); for more details see Section 4.7.

Theorem 2 At the end of any round r the number of weak hypotheses in the best

leaf-model MIr
is between r and 2r. That is,

r ≤ nIr
= lIr

< 2r. (2)

Furthermore,

nIr
= lIr

≥
√

2tr + 7 − 1

2
. (3)

Proof The first statement of the lemma is very simple, since in any round the
length of the best leaf-model increases by either one or two: If the best leaf-model
is expanded in round r according to step (a) and it remains the best-leaf model
then trivially nIr

= nIr−1
+1. If the best leaf model is expanded but another model

becomes better during the round, then the latter model is expanded so many times
that the corresponding leaf-model (which, in turn, will become MIr

) be of depth
nIr

= lIr
= lIr−1

+ 2. Finally, if MIr−1
is not expanded according to step (a), then

the length of MIr
has to be set to lIr−1

+ 1. Thus

1 ≤ nIr
− nIr−1

= nIr
− nIr−1

≤ 2

in all situations. Since in the first round clearly exactly one node of the boosting
tree is generated, that is, nI1

= 1, (2) follows.
To prove the second part, notice that in any round r, at most nIr−1

+ 1 nodes
can be expanded according to step (a) as no algorithm can be used that has taken
more steps than the currently best one (and hence the currently best leaf-node).
Also, no extra weak hypotheses have to be computed if the conditions in step (c)
are met. If not, then at most nIr−1

+ 1 weak hypotheses have to be computed in

1 Note that the limits exist (may be infinite) as they are taken over nondecreasing sequences.
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Fig. 4 Synthetic binary classification problem with two features. The positive data points are
marked with +, and the negative points with −.

addition (i.e., the best model has to be extended with at most this many weak
hypothesis). Therefore,

tr ≤ tr−1 + 2nIr−1
+ 2.

Thus, since step (c) has no effect in round 1, we obtain

tr ≤ 1 +
r

X

s=2

2(nIs−1
+ 1).

Then, by (2) we have

tr ≤ 1 + 4
r

X

s=2

s = 1 + 2(r + 2)(r − 1) ≤ 1 + 2(nIr
+ 2)(nIr

− 1)

which yields (3).

3.2 An illustrative example

We illustrate the BoostingTree algorithm on a synthetic binary classification
problem combined with the AdaBoost algorithm (Freund and Schapire 1997)
with decision stumps. The classification problem is shown in Figure 4. A stump
w : R → R is defined by a split of the real line represented by a half line H and a
weight v such that w(u) = v if u ∈ H and w(u) = −v if u 6∈ H. The constraints at
the nodes restrict the choice of the stumps to a single feature. Denoting the feature
selected for the stump wj by ij , and the ith coordinate of a feature vector x ∈ X
by xi, the model after l steps becomes Ml(x) =

Pl
j=1 wj(xij

), and the classifier
decides to class + if M(x) ≥ 0, and to class − otherwise.

The model generated on this problem by a regular AdaBoost algorithm is
shown in Table 1, left. While the model classifies all data points correctly, it
includes five decision stumps, and perfect classification can be obtained with only
three decision stumps as shown in Table 1, right, if we split always feature 1. A
similarly small model can be obtained by splitting three times feature 2.

In each step of the AdaBoost algorithm, first, the data are re-weighted, then
a decision stump is chosen (a feature and a split for that feature is selected), and a
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Table 1 Models for the synthetic classification problem. The left table shows the sequence of
decision stumps generated by a regular AdaBoost algorithm with the corresponding weigths.
For each decision stump, the top row specifies the feature to be splitted, and the second row
specifies the interval for which positive label is assigned. The table on the right specifies the
model generated if in each step the decision stump is constrained to feature 1. For this model,
if we sum the weights over the intervals, we have +0.55− 0.55− 0.80 = −0.8 if feature 1 is less
than 0.2 (thus negative label), +0.8 between 0.2 and 0.4 (positive), −0.3 between 0.4 and 0.6
(negative), and +0.8 above 0.6 (positive).

feature 1 2 2 1 1
split ≤ 0.4 ≤ 0.4 > 0.6 > 0.2 > 0.6

weight 0.55 0.55 0.62 0.76 0.67

feature 1 1 1
split ≤ 0.4 > 0.6 > 0.2

weight 0.55 0.55 0.80

weight is computed for the decision stump. When the BoostingTree algorithm is
combined with AdaBoost, it selects a model (a combination of decision stumps)
to be extended, and selects the feature to be added to the model. The latter is
the constraint on the construction of the new weak hypothesis (i.e., the decision
stump to be added). The re-weighting of the data, the selection of the split, and
the formula for the weight of the new decision stump remains unchanged from the
AdaBoost algorithm.

Two possible runs of the BoostingTree algorithm are shown in Table 2. The
differences in the possible runs are due to the different selection of the features for
the new decision stumps (which is the same as the selection of the constraint in
step (b) of the algorithm; cf. Figure 3). Normally, the selection is done by selecting
randomly from the features that has not been expanded for the model chosen for
expansion in step (a). In the worst case scenario of Table 2, top, instead of random,
the feature that least likely to lead to a small optimal model in the algorithm is
selected. While for the best case scenario of Table 2, bottom, the feature that leads
more likely to such a model is selected.

As shown in Table 2, the BoostingTree algorithm starts with an empty model
(the first row in each table). In each round, the ‘active’ models2 are considered for
expansion with their error (1 − f̂) and cumulative length (n). Of these candidate
models, only those are expanded that obey the properties outlined in step (a) of
the BoostingTree algorithm. In this discussion we will not make the functions
hr more specific since, due to the simplicity of the considered problem, the steps
shown in the tables would be independent of the choice of hr as long as it obeys
the specified requirement (i.e., being positive, monotone decreasing function). To
understand better how the selection works, consider the candidates in round 3 of
the top table, the empty model, the model that includes a decision stump with
feature 2, and the model with the feature sequence (2,1). The empty model that
has cumulative length equal to 1 (it has model length equal to 0, and has been
expanded once) will be selected for expansion since the inequality holds for large ĉ

(e.g., for ĉ = ∞). For the other two candidate models the inequality holds for small
values of ĉ (e.g., for ĉ = 0), but both have the same value n = 2, and according to
the description of the algorithm, we select for expansion only the one with smaller
model length. Subsequently the empty model is extended with feature 1 (fourth
row), given that it was already extended with feature 2. Similarly, the model with

2 Active models are those that have been evaluated already and have not been expanded
with all features available, in this problem by both feature 1 and 2.
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Table 2 BoostingTree runs combined with AdaBoost on the synthetic problem of Figure 4.
The separate runs are provided for a worst case (top) and a best case scenario (bottom). Each
row corresponds to a feature sequence, that is, to the model obtained with AdaBoost by
sequentially constraining the decision stumps in the ensemble with the particular feature from
the sequence. The first row in each table corresponds to an empty model. In the error column
classification error corresponding to the obtained model (i.e., feature sequence) is given (the

error equals 1−f), while the minimum error (1− f̂) over the prefixes of the particular sequence
is given in brackets if differs from f . In the columns corresponding to the consecutive rounds
(r) the cumulative length (n) is provided. The number is given in bold if the sequence is
selected for extension. The letter e specifies the round in which the sequence is evaluated, c
is attached if the sequence is extended due to step (c) of the BoostingTree algorithm, while
the letter t marks a tie situation. When a sequence is extended with both features, it will not
be considered for further expansion, and, therefore, the corresponding cell in the table is left
empty for the following rounds.

model error r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7

- 0.5 0 1 1

2 0.25 e 1 2

2,1 0.375 (0.25) e 2 2 2 2 2 (t)
1 0.25 e 1 2

2,2 0.375 (0.25) e 2 2 2 2 (t)
1,2 0.25 e 2 2 2 (t)
1,1 0.125 e 2 (c) 3

1,1,2 0.125 e 3
1,2,1 0.125 e
1,1,1 0 e

- 0.5 0 1 1

1 0.25 e 1 2
1,1 0.125 e 2

1,2 0.25 e
1,1,1 0 e

the single feature 2 is extended with the same feature 2. For both models the
AdaBoost steps follow, thus the data is reweighted, the split is computed for the
added feature, the model is augmented with the new decision stump (consisting
of the feature and the split), and the new model is evaluated.

Considering how well the BoostingTree algorithm performs on this classi-
fication problem, we observe that even in the worst case, the number of steps
necessary to obtain a 0-error model for the BoostingTree algorithm is not much
higher than for the regular AdaBoost (nine vs. five), with the BoostingTree

yielding a smaller model (three decision stumps instead of five). Moreover, even in
this case the number of times a split has to be selected is smaller for the Boost-

ingTree combination (nine) compared to how many times the regular AdaBoost

looks for a split (ten, since in each step the split is computed for both features).
In the best case scenario, only four steps are needed to find the smallest 0-error
model.

Looking at some finer details of the BoostingTree runs, in particular the one
corresponding to the worst case scenario, we note that step (c) of the algorithm
is activated in the sixth round. In this case, it does not alter the course of the
algorithm since the (1,1) sequence would have been the only one to be selected
anyway, but it would have given a further push if more complex models (with larger
length l) had been generated previously, which is favorable since exactly this model
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was extended subsequently to the optimal model. In the seventh round there is a
tie broken based on the classification error of the model, with the sequence (1,2)
having the smallest f . Ties with identical f̂ and n occurred also in round 3 and 5,
and were broken according to the smallest length (l). Finally, in a somewhat more
favorable scenario the sequence (2,2) could be extended to the alternative smallest
0-error model, which is (2,2,2). This is an example for the situation of the error
first increasing and then decreasing mentioned in Section 3.

3.3 Implementation issues

Note that, as shown in the example in the previous section, the training error
becomes zero exponentially fast in boosting algorithms. However, when the labels
are noisy, it is typically worth to run the training longer, and set the actual number
of training iterations using a validation set. When the BoostingTree includes
several models with optimal performance on the training set, the shortest models
are selected, and the optimal models are grown at the same rate, building a full
tree from any optimal node. One can avoid this, for example, by using a validation
set to compute f̂i. Note however, that we have not encountered such situations in
our experiments.

Boosting algorithms work by weighting the data points, and, in order to reduce
the computation time, most implementations take advantage of the possibility to
compute incrementally the weights of the data points, and store some auxiliary
record for each point as the algorithm proceeds. In the case of AdaBoost, the
auxiliary records consist of the current weights and, for the ranking algorithms
discussed in Section 4.3, they consist of the current score of each document. Since
a boosting tree can be expanded at any node, in order to use the same speed-
up technique, one would need to keep the auxiliary records for each node of the
boosting tree, which may result in prohibitive memory consumption. It is clear that
for nodes corresponding to short boosting sequences, recomputing these records is
sufficiently fast, and there is no real need to store such auxiliary records. To balance
between memory usage and computation time, one can develop heuristics to store
the records for the most promising and/or most recently used models only, and
recompute them for other models when necessary. In the experiments, presented in
the next section, we have simply decided to always recompute the weights; since
most of the tree is shallow (we aim for short models in any case), this has not
introduced a large computational overhead, and the observable speed-ups include
this overhead.

4 Experiments

In this section we describe the empirical evaluation of the BoostingTree algorithm
using two boosting algorithms for ranking: LambdaMART (Section 4.3.1) and ND-

CGboost (Section 4.3.2). The two boosting algorithms are used either standalone
(we refer to these as the standard variants), combined with adversarial bandits
(Exp3.P; Busa-Fekete and Kégl 2010), or combined with the BoostingTree al-
gorithm. Thus in total we have six algorithms. The evaluation measure used in
the experiments is the Normalized Discounted Cumulative Gain (NDCG; Järvelin
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and Kekäläinen 2000), described in Section 4.1. Two standard webpage ranking
benchmark datasets are used for evaluation (Section 4.4 and Section 4.5), with an
additional benchmark constructed with move ordering in chess (Section 4.6). The
section ends with a discussion on the results and some observations regarding how
BoostingTree behaves in practice.

4.1 Ranking measure: NDCG

NDCG is one of the most popular measures to evaluate ranking, and has been
used in several ranking challenges (see, e.g., Chapelle and Chang 2011). Here
we consider a typical ranking problem, where documents should be provided to
answer queries. We denote the set of queries by Q = {q1, . . . , qn}. For each query qi,
a ranker is faced with a set of mi documents Di = {di1, . . . , dimi

}. Each document
dij is labeled by a number lij indicating its relevance with respect to the ith

query. The gain of a document is typically defined as gij = 2lij −1, with irrelevant
documents being labeled 0, and more relevant ones having higher valued labels
(1,2, 3, . . .). Faced with a query qi, a ranking algorithm outputs a permutation π

of the documents, with πik denoting the document ranked on the kth position,
and conversely, rij denotes the rank of the document dij .

The Discounted Cumulative Gain (DCG) of the ith query is usually defined
up to K documents as follows:

DCG@Ki(π) =

min(K,mi)
X

k=1

γk giπik
,

where γk is a discount factor. Järvelin and Kekäläinen (2000) defines the discount
factor by γk = 1, if k = 1, and γk = 1/ log2 k, otherwise. This definition is used by
the benchmark described in Section 4.4, while the benchmark of Section 4.5 uses
a slightly different definition, with γk = 1/(log2(k + 1)) that results in a strictly
decreasing discount sequence (as opposed to the first definition, where γ1 = γ2).

Let maxDCG@Ki = maxπ DCG@Ki(π) denote the discounted cumulative gain
corresponding to an optimal ranking for the ith query. Then normalized discounted
cumulative gain (NDCG) of the ith query is defined as

NDCG@Ki(π) =
DCG@Ki(π)

maxDCG@Ki
,

and the average NDCG is defined by

NDCG@K(π) =
1

n

n
X

i=1

NDCG@Ki(π).

Finally, MeanNDCG(π) is defined as the average of the normalized discounted
cumulative gain up to the number of documents:

MeanNDCG(π) =
1

n

n
X

i=1

1

mi

mi
X

k=1

NDCG@ki(π)

Both ranking measures, NDCG@K(π) and MeanNDCG(π), need to be max-
imized. They reach their maxima at 1, for an optimal ranking, and are always
non-negative as the lowest value for giπik

is assumed to be non-negative.
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4.2 Algorithms

In this section we revisit the two boosting algorithms used in the experiments,
and some details of the specific implementation of BoostingTree and Exp3.P

algorithms are also given.
In a typical ranking problem documents related to a query have to be ordered,

and each query-document pair is described by a feature vector. Since a model
obtained by a boosting algorithm returns a real valued score for each pair, the
ordering for a particular query is obtained by sorting the documents according to
their scores.

The two boosting algorithms for ranking used in the experiments (Lamb-

daMART and NDCGboost) apply trees as weak hypotheses (regression and deci-
sion trees, respectively). When selecting a weak hypothesis, the tree construction
algorithms build a tree by recursively partitioning the input space and assigning
a value (or label) to each leaf. When a partition corresponding to a node is being
subpartitioned, the tree construction algorithm selects a feature, and partitioning
is made by thresholding this feature value. The feature and the corresponding
threshold in each internal node, as well as the label of each leaf is selected to
minimize some measure, such as the mean squared error for regression trees.

In our algorithms the selection of the weak learner, a regression or decision
tree, is often constrained. In these experiments we choose to use constraints that
allow partitioning a node of a tree based on a single feature, and the constraint
determines for each node which feature should be used. Thus a constraint can
be seen as a tree of features, where each node in the constraint tree restricts
the choice of feature in the corresponding internal node of the decision tree. The
leaves in the decision tree hold the labels for a particular subpartition, and have no
corresponding node in the constraint tree. It may happen that a tree construction
algorithm decides not to split the data further at some node (for instance, when
only one document falls in the node), then some elements of the constraint tree
are ignored.

Next we specify details concerning the algorithms applied in the experiments.

4.2.1 The BoostingTree algorithm

There are two important details that have to be specified when implementing the
BoostingTree algorithm: selecting appropiate functions for hr and chosing how
to set constraints on the weak learners. For the former, we opted to the functions

hr(n) = e−n/
√

tr , successfully applied in (György and Kocsis 2011).
The constraint tree is constructed by selecting features randomly for all nodes.

The size of the tree depends on how large the decision tree to be used in the base
boosting algorithm is intended to be. In practice, the constraints on each node
can be selected during the construction of the decision tree. When expanding a
particular model, constraint trees that have been already selected for that model
are not repeated.

4.2.2 The Exp3.P algorithm

The Exp3.P algorithm is an algorithm originally designed for multi-armed bandit
problems (Auer et al 2002b). The use of the algorithm to improve the speed of a



BoostingTree 17

Parameters: exploration rate 0 ≤ λ ≤ 1, smoothing parameter η > 0,
training data D, set of K features.

Initialization:M0 = ∅, t = 1, ω
(1)
k

= 1, with k=1,. . . ,K, and evaluate initial
model fo = V (M0, D)

For each iteration t = 1, 2, . . .

(a) For each feature k, compute selection probabilities p
(t)
k

:

p
(t)
k

= (1 − λ)
ω

(t)
k

P

k′ ω
(t)
k′

+
λ

K
.

(b) Select constraint Ct using the set of probabilities p
(t)
k

.
(c) compute weak hypothesis wt = A(Mt−1, Ct,D).
(d) Construct new model Mt = Mt−1 +wt
(e) Evaluate the new model: ft = V (Mt, D), and compute reward function

f̃t

(f) For each feature k, compute ρ
(t)
k

, ω
(t+1)
k

:

ρ
(t)
k

=

8

<

:

f̃t

p
(t)
k

if feature k is included in Ct

0 otherwise

ω
(t+1)
k

= ω
(t)
k
exp

 

λ

3K

 

ρ
(t)
k

+
η

p
(t)
k

√
K

!!

Fig. 5 The Exp3.P algorithm applied for boosting.

boosting algorithm was proposed by Busa-Fekete and Kégl (2010). The algorithm
applied for boosting is described in Figure 5. Note that the description differs
somewhat from that of Busa-Fekete and Kégl (2010) in the initialization of the

weights ω
(1)
k , however the algorithm performs exactly the same way independently

of the initial values of the weights as long as they are equal. Moreover, in step
(f) of the original algorithm, η is divided by the square root of the maximum
iteration number. We absorbe this into the smoothing parameter η in order to
simplify notation.

There are several variants proposed by Busa-Fekete and Kégl (2010) on how to
select the constraint in step (b). In our implementation, the constraint is similar
to the one described in Section 4.2.1 for the BoostingTree algorithm, except that
features are not selected uniformly at random, but according to the probability

distribution p
(t)
k . If the weak hypotheses are decision stumps this choice of the

constraint is very similar to the multi-armed bandit set-up. For decision trees with
several nodes, the choice of the constraint is less trivial. Busa-Fekete and Kégl
(2010) discussed several choices, and decided in their empirical evaluations for a
similar approach to ours. This is perhaps the simplest approach without having to
solve a more complicated credit assignment problem over the involved features.

A further choice has to be made on the reward function f̃t. When combined
with AdaBoost Busa-Fekete and Kégl (2010) suggested the use of a function
based on the edge of the weak hypothesis. For the boosting algorithms for ranking
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discussed in Section 4.3, this is a less natural choice. Experimentally we found that
the difference f̃t = ft − ft−1 is an appropiate choice in our case. In Section 4.4 we
revisit this issue in a short discussion.

Altough we tested several values of the constants λ and η, we have not noticed
any strong influence on the performance, except for some extreme values (such as
λ = 1 or λ = 0). Therefore all reported experiments with Exp3.P are with λ = 0.3
and η = 0.1.

4.3 Boosting algorithms

Next we describe the two boosting algorithms used in our ranking problems.

4.3.1 The LambdaMART algorithm

LambdaMART (Wu et al 2010) is a gradient tree boosting algorithm that ap-
proximates the gradient of the ranking measure by combining a pairwise gradient,
based on the scores given by the generated model, and the change in the rank-
ing measure when two documents are swapped. Empirically, this approximation
was shown to be close to the true gradient in LambdaRank (Donmez et al 2009).
LambdaMART is one of the most successful ranking algorithm, forming the core
of the winning entry at the Yahoo! learning to rank challenge (Burges et al 2011).

One iteration of the LambdaMART algorithm that represents the computation
of a weak hypothesis given the current model is shown in Figure 6. The standard
version of the algorithm starts with an initial model (possibly empty as in our
implementation), and iteratively adds new weak hypotheses. No constraints are
placed on the generation of the regression tree (step (c)), in this variant. When
called from the BoostingTree or the Exp3.P algorithm, the selection of features
is constrained in the manner discussed above.

In the experiments, we optimize for NDCG, thus, the change in the ranking
measure, ∆Z, after swapping documents dij and dij′ becomes

∆NDCGijj′ =
1

n maxDCGi
(γrij − γrij′

)(gij − gij′).

The combination coefficient α in the algorithm is set to 0.2, which appears to be
a good choice for all three benchmarks, although the value was selected only after
a few test runs. σ is set to 1, while the number of leaves L varies with the problem,
depending mostly on the size of the data, but, as we discuss in Section 4.6, also
on the complexity of the features.

When analyzing the time complexity of LambdaMART, we can split the algo-
rithm into two parts: (1) the computation of λij and γij , and (2) the training the
regression tree. The first part scales linearly with the product of the number of
documents and the number of documents per query (the latter term can be smaller
if there are only a few relevant documents for each query). The second part scales
linearly with the product of the number of documents, the number of leaves, and
the number of features considered in each internal node. If the number of leaves
is small and, more importantly, the selection in an internal node is constrained to
one particular feature, then the first part may dominate the computation time,
otherwise the second part can be far more expensive.
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Parameters: current model M , training data D, constraint C, ranking
measure Z, constants σ, α > 0, number of leaves L.

(a) For each query i, and each distinct document pairs dij , dij′ ∈ D, compute
the change in the ranking measure by swapping the two documents, Zijj′ ,
and the corresponding approximate pairwise gradients, λijj′ :

λijj′ =
−σ|∆Zijj′ |

1 + eσ(M(dij)−M(dij′ ))

(b) For each query i, and each document dij ∈ D, compute approximate first
and second order gradients, λij and γij , as follows:

λij =
X

j′:lij>lij′

λijj′ −
X

j′:lij<lij′

λij′j ,

γij = −
X

j′:lij>lij′

λijj′ (σ|∆Zijj′ |+λijj′ )−
X

j′ :lij<lij′

λij′j(σ|∆Zij′j |+λij′j).

(c) Train an L leaf regression tree ψ on {dij , λij}, subject to constraint C.
(d) Create regression tree ψ′, by replacing each lth leaf values of ψ, with

P

dij∈ψl
λij/

P

dij∈ψl
γij , where the summations are over the documents

that fall into the lth leaf.
(e) Return weak hypothesis αψ′.

Fig. 6 Computing the weak hypothesis in the LambdaMART algorithm.

4.3.2 The NDCGboost algorithm

NDCGboost (Valizadegan et al 2009) is a boosting algorithm that optimizes the
expectation of NDCG over all possible permutations of documents. The computa-
tion of a weak hypothesis given a current model in the NDCGboost algorithm is
provided in Figure 7. The binary classifier used in step (b) of the algorithm is a de-
cision tree with L leaves, where the number L varies with the problem (similarly
as in the case of LambdaMART). The constraint imposed on the tree building
algorithm is also similar to the constraint imposed in LambdaMART, with the
standard NDCGboost iteratively adding unconstrained weak hypotheses, while
the BoostingTree and the Exp3.P algorithms constrain every added tree by a
feature tree. Although we are not aware of any strong performance obtained in
any ranking challenge with NDCGboost, the main reason it is included in our
experiments is that it appears to us as a highly performing ranking algorithm,
which is also illustrated in Sections 4.4 and 4.5.

When analyzing the time complexity of LambdaMART, we can split the algo-
rithm into three parts: (1) the computation of γij , (2) the training of the decision
tree (assumed to be the classifier), and (3) the computation of the combination
weight. The first and third parts scale linearly with the product of the number of
documents and the number of documents per query (and as for LambdaMART,
the latter term can be smaller if there are only a few relevant documents for each
query). The second part scales linearly with the product of the number of docu-
ments, the number of leaves, and the number of features considered in each internal
node. Similarly to LambdaMART, the first and third parts take a significant time
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Parameters: current model M , training data D, constraint C.

(a) For each query i, and each document pair dij , dij′ ∈ Di, j 6= j′, compute
θijj′ , and the weight γij for each document dj ∈ Dj , as follows:

θijj′ =
eM(dij)−M(dij′ )

“

1 + eM(dij )−M(dij′ )
”2

γij =

mi
X

j′=1:j′ 6=j

2lij − 2lij′

maxDCGi
θijj′ .

(b) Train a binary classifier ψ that maximizes
Pn
i=1

Pmi
j=1 γijψ(dij ), subject

to constraint C.
(c) Compute the combination weight α:

α =
1

2
log2

0

B

@

Pn
i=1

P

j,j′:ψ(dij)<ψ(dij′ )
θijj′

2
lij −1

maxDCGi

Pn
i=1

P

j,j′:ψ(dij)>ψ(dij′ )
θijj′

2
lij −1

maxDCGi

1

C

A
.

(d) Return weak hypothesis αψ.

Fig. 7 Computing the weak hypothesis in the NDCGboost algorithm.

compared to the second part only if the number of leaves is small and in the pres-
ence of a strong constraint (when the optimization in the training of the decision
tree is rather limited, e.g., when the tree is constrained by a feature tree).

4.4 The LETOR benchmark

The LETOR benchmark collection3 is perhaps the most frequently used bench-
mark dataset for learning to rank. One of the most significant feature of LETOR
is that the results of several reference algorithms are available for the datasets
included. For our experiments we selected the largest dataset, MQ2007, from the
Letor 4.0 collection, which is 46 dimensional, with 1692 queries and 69,623 doc-
uments (thus, approximately 41 documents/query in average), and is split in five
folds. The relevance labels are ranging from 2 (most relevant) to 0 (irrelevant). On
this dataset the RankBoost (Freund et al 1998) algorithm has roughly the best
results out of the algorithms enlisted on the website associated with the bench-
mark collection, and therefore, in the following we also show the performance of
RankBoost as a baseline (note that the standard performance measure for this
dataset is MeanNDCG).

On this dataset, for both LambdaMART and NDCGboost small decision trees
with only 2 leaves appeared to be a good choice for the weak learners, thus, in
fact, we use stumps. For learning with Exp3.P accelerated boosting, the reward
function for the Exp3.P algorithm has to be defined. In the experiments we used
the change in NDCG on the training set (after adding a new weak hypothesis)

3 http://research.microsoft.com/en-us/um/beijing/projects/letor/
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Table 3 MeanNDCG on the MQ2007 dataset from the Letor 4.0 benchmark collection for the
five folds, and their average. The RankBoost results are provided as baseline on the LETOR
website. For each fold, the best model for the standard variant of the LambdaMART and the
NDCGboost algorithms is selected based on the MeanNDCG on the validation set in 1,000
iterations (i.e., ensembles of at most 1,000 hypotheses), and in the table the MeanNDCG
of the selected model on the corresponding test set is reported. Similarly, the MeanNDCG
on the test sets for the Exp3.P variants correspond to the ensembles with the best validation
MeanNDCG in 5,000 iterations, while for BoostingTree it corresponds to the best validation
MeanNDCG of the first 5,000 hypothesis sequences.

Fold1 Fold2 Fold3 Fold4 Fold5 average

RankBoost 0.5267 0.4913 0.5118 0.4687 0.5030 0.5003
LambdaMART 0.5380 0.4832 0.5248 0.4781 0.5060 0.5060
NDCGboost 0.5356 0.4852 0.5193 0.4765 0.5094 0.5052
Exp3.P(LambdaMART) 0.5247 0.4801 0.5120 0.4691 0.5025 0.4977
Exp3.P(NDCGboost) 0.5426 0.4918 0.5123 0.4700 0.5001 0.5033
BoostingTree(LambdaMART) 0.5400 0.4837 0.5257 0.4770 0.5060 0.5065
BoostingTree(NDCGboost) 0.5383 0.4897 0.5202 0.4785 0.5089 0.5071

as the reward. Using changes in MeanNDCG gave similar results, while using
quantities related to the training of the weak classifiers as rewards fared worse.
Finally, BoostingTree optimizes for MeanNDCG on the training set.

For this problem there is only one decision stump for each weak hypothesis, and
the number of documents for each query is in the same order as the dimension
of the data, while a quarter of the documents are relevant, therefore, for both
boosting algorithms the time required for building the tree does not dominate
outright the running time of the other steps of the respective boosting algorithm.
In our implementation, both Exp3.P and BoostingTree were approximately five
to ten times faster per iteration than the standard variants.4 Consequently, we run
these two algorithms for five times more iterations then the standard variants.

The MeanNDCG performance on the five folds for the six algorithms are pro-
vided in Table 3, in addition to the RankBoost baseline, while the NDCG@k

performance are shown in Figure 8. Overall, the standard variants of both Lamb-

daMART and NDCGboost performed better than RankBoost, while the dif-
ference between the two standard variants is negligible. Exp3.P performs poorly
when combined with LambdaMART and somewhat worse than the standard vari-
ant when combined with NDCGboost. BoostingTree performs slightly better
than the corresponding standard algorithms, with a more pronounced improve-
ment over NDCGboost, which might be related to the fact that Exp3.P is also
more successful in this combination (on this dataset, randomized moves appear
more successful with NDCGboost).

The MeanNDCG performance of the six algorithms is shown in Figure 9 for
varying limitations on the length of the boosting sequence. Note that the length

4 We discussed, so far, only the time complexity of the various components of the boosting
algorithms. Selecting the models to expand in a round of the BoostingTree algorithm (Fig-
ure 3, step (a)) takes more time than computing the probabilities in the Exp3.P algorithm
(Figure 5, step (f) and (a)), however, for all datasets described in the paper, these take still
considerably less time than the reweighting of the data in either of the two boosting algorithms,
that is, in LambdaMART (Figure 6, step (b)) and in NDCGboost (Figure 7, step (a)).
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Fig. 8 NDCG@k performances for varying k on the LETOR data set. The NDCG@k
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Fig. 9 Average MeanNDCG on the test sets of the five folds of the LETOR benchmark.
The MeanNDCG test results correspond to the ensembles with varying maximum number of
stumps that have the best validation MeanNDCG.

of the boosting sequence is equal to the number of (boosting) iterations for the
regular variant and the Exp3.P algorithm, but it differs from the number of iter-
ations (or rounds) in the case of the BoostingTree algorithm. We are interested
in the length of the sequence more, since we aim for shorter (i.e., low-complexity)
models with good performances. The asymptotic performance of the three vari-
ants (standard, Exp3.P and BoostingTree) are quite close to each other, but
there is a clear difference when less than 100 trees are included in the final model.
Interestingly, Exp3.P performs on par with the standard variant, when combined
with LambdaMART, and even better, when combined with NDCGboost. Boost-

ingTree has a clear advantage in the early phase over both variants with more
pronounced advantage combined with NDCGboost.

4.5 Yahoo! ranking challenge

The dataset used in this section was used in the Yahoo! Learning to Rank Challenge
(Chapelle and Chang 2011). The set is 519 dimensional, with 29,921 queries, and
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709,877 documents (thus, approximately 29 documents/query in average). The
relevance labels range from 4 (most relevant) to 0 (irrelevant). The winning entry
in the challenge was a combination of models resulting from the LambdaMART

and the LambdaRank algorithms (Burges et al 2011) (the evaluation metric in the
challenge was NDCG@10).

On this dataset, a good choice of the number of leaves of the decision trees for
LambdaMART appears to be 16, while for NDCGboost it is in the range between
16 and 64 (with a large number of iterations it appeared to be 32). In Exp3.P,
we use the change in NDCG on the training set as reward, while BoostingTree

optimizes for NDCG on the training set.

Given that the number of leaves is somewhat larger for this problem (compared
to the LETOR benchmark), and the dimension of the data is 20 times larger than
the number of documents per query, the Exp3.P and the BoostingTree algorithms
are approximately 500 times faster per iteration than the regular variants (with
32 leaves). By parallelizing the standard variants (by distributing the features on
different processors), we managed to bring down their running time significantly
and as for the LETOR benchmark we run the BoostingTree algorithm only for
five times more iterations than the standard variants.

The NDCG@10 performance of the six algorithms is shown in Figure 10 for
varying limitations on the length of the boosting sequence. We observe that,
asymptotically, BoostingTree achieves similar performance as the standard vari-
ant, for both LambdaMART and NDCGboost, while Exp3.P has a relatively weak
performance even when a large number of trees are included. We expect Exp3.P

to converge eventually to the performance of the standard variant, but that may
require a considerably larger number of trees. It is interesting that the performance
drop of Exp3.P is not so much related to the number of leaves, and varies more
with the boosting algorithm (it performs considerably better with LambdaMART

than with NDCGboost). When the final model is limited to a small number of
trees BoostingTree has clearly an edge, and the difference to the standard version
correlates with the performance of Exp3.P.

4.6 Move ordering in chess

The efficiency of search algorithms in games heavily depends on the order in which
the moves are examined. Although the strong chess programs are unlikely to bene-
fit from move ordering generated by boosting algorithms, we include chess datasets
in the experiments, since chess records are easily accessible, and some properties
specific to games are highlighted by these sets as well. We expect that, for instance,
using such move ordering in the Monte-Carlo simulations in Go (Gelly and Silver
2008), or in RTS games can offer more improvement (than it would do in chess).

Two datasets were constructed including middle-game positions originating ei-
ther from the opening line B84 or E97 (Matanović et al 1971). The first, B84
(Classical Scheveningen variation of Sicilian Defence), results in more open posi-
tions, while the second, E97 (Aronin-Taimanov variation of King’s Indian), leads
usually to positions with a closed centre. Each entry of the datasets describes
a position-move pair, where the position describes the locations of all pieces on
the board. The goal of the ranking algorithm is to provide partial ordering for
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Fig. 10 NDCG@10 results on the Yahoo! benchmark for LambdaMART with 16 leaves
(top-left), NDCGboost with 16 leaves (top-right), NDCGboost with 32 leaves (bottom-left),
and NDCGboost with 64 leaves (bottom-right). The NDCG@10 test results correspond to
the ensembles with varying maximum number of decision trees that have the best valida-
tion NDCG@10. BoostingTree was run for 5,000 iterations (i.e., until 5,000 sequences were
generated).

moves for the same position. Thus, to cast the problem in our previous document-
query framework, the positions correspond to queries, and moves correspond to
documents. Similarly, each position-move pair is described by a feature vector: an
integer value is reserved for each square of the board (representing the piece occu-
pying the location), describing the position, and further seven features encode the
move (including: the moving piece, the file and rank, i.e., the coordinates, of the
origin and the destination of the move, if the move is a capture, captured piece
if any). Thus, the datasets are 71 dimensional. The B84 dataset includes 2,000
positions and 85,380 moves (thus, a branching factor of around 42), while the E97
set includes 3,000 positions and 109,341 moves (branching factor of around 36).
The lower branching factor of the second set is due to the closeness of the opening
line.

For each position of the datasets all legal moves were included, and their score
was computed by a 1 second search using the game program CRAFTY (Hyatt and
Newborn 1997). The scores are converted to ranking labels as follows: the move
with the best score, or with a score not worse than that by a tenth of a pawn
(the best moves) have their relevance labeled with the value 4, the moves scored
lower but not by more than a fifth of a pawn are labeled 3, moves with scores
lower by less than three-tenth of a pawn are labeled 2, moves with scores lower by
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less than half a pawn are labeled 1, and the rest are labeled 0. The latter group
includes moves that are likely to be poor, so they should not be considered for
investigation.

On this dataset both LambdaMART and NDCGboost needed regression, and,
respectively, decision trees with up to 32 leaves to achieve a reasonable perfor-
mance. Although the dimensionality of the data is not considerably higher than
that of the LETOR benchmark set, the features representing the positions and
moves are very ’raw’ for this set, and therefore it is not surprising that a deeper
representation is needed to combine the features. In Exp3.P, we use the change in
NDCG on the training set as reward, while BoostingTree optimizes for NDCG

on the training set.
For these two datasets the number of features is not much higher than the

branching factor (a quarter of the moves being relevant), but the number of leaves
is significantly higher than in the case of the LETOR benchmark, and therefore,
the regular variants are again significantly slower per iteration (approximately 60
times slower). As for the Yahoo! benchmark, we parallelized the regular variants,
and run the BoostingTree algorithm for five times more iterations.

The NDCG@10 performance of the six algorithms on the dataset B84 and
E97 is shown in Figure 11 for varying limitation on the length of the boosting
sequence. It is striking how poor the performance of Exp3.P is compared to the
standard variant. And the weak performance is most stringent when only a small
number of trees are included in the final model. The performance of Exp3.P is
catching up slowly, but it is clear that finding a good combination of features
(almost) randomly is slow. For the two previous benchmarks, with more complex
features, this did not appear to be a problem. The performance of BoostingTree

(relative to the standard boosting algorithms) is also weaker compared to the
previous benchmarks, but it is clear that by attempting to find alternatives to the
randomly chosen feature sequences, the algorithm eventually converges to better
choices, and to performances that are comparable to that of the standard boosting
algorithms.

4.7 Practical growth rate in the BoostingTree algorithm

György and Kocsis (2011) provided a bound that the number of algorithm in-
stances in Metamax grows with at least Ω(

√
tr), while showing that in practice

it grows at a rate of Ω(tr/ ln tr). Conversely, this implies that the length of a
Metamax round in practice grows at a rate of Ω(ln tr) instead of Ω(

√
tr).

We revisit this problem here by plotting the length of a round in BoostingTree

for various ranking benchmark sets (Figure 12, left). We observe that the number
of sequences grows at a slightly larger rate, but it appears to be still Ω(ln tr),
rather than Ω(

√
tr), although there appears to be a slight increase compared to

MetaMax. Note, however, that in BoostingTree the number of sequences is in-
creased by 1 every time a sequence is extended (although a model is not considered
anymore once all of its possible children nodes are generated, which rarely hap-
pens in practice), while in MetaMax a new algorithm instance is added in every
round. The increase in the round length is most likely due to this increase in the
number of hypothesis sequences (compared to the number of algorithm instances
in MetaMax), which is most prominent when the leading sequence is forced to be
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Fig. 11 NDCG@10 results on the B84 (top) and E97 (bottom) chess benchmark sets. The
NDCG@10 test results correspond to the ensembles with varying maximum number of decision
trees that have the best validation NDCG@10. BoostingTree was run for 25,000 iterations
(i.e., until 25,000 sequences were generated)

the longest (step (c) of the algorithm), while in the similar step of the MetaMax

algorithm no new algorithm instances are added.

In Theorem 2 we provided a bound of order Ω(
√

tr) on the number of weak
hypotheses lIr

combined in the best model in a round r. In practice, the best
model seems to grow at a higher rate, Ω(tr/ ln(tr)), as shown in Figure 12, right.

4.8 Discussion

In the experiments, we have used three benchmark sets, a smaller and a larger
in the web search domain, and a medium size in move ordering in chess. Other
than the size and the domain, there was one more difference between the sets,
notably the complexity of the features (with the chess dataset having rather raw
features). Not surprisingly, for larger data more complex models are suitable (de-
cision trees with more leaves), moreover, raw features need to be enhanced by
multiple combination levels (again, more leaves in the decision trees). The perfor-
mance of boosting algorithms accelerated by bandit algorithms appears to be less
sensitive to the size of the data (and as such, in some respect, to the size of the
decision tree), however, their performance appears to degrade significantly when
individual features are too raw to improve the model, and the right combination of
features are to be found instead. The behavior of this algorithm seems to depend
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Fig. 12 The length of a round (left) and the number of hypothesis in the best model (right)
for varying number of generated hypothesis sequences (tr). The LETOR curve averages over
runs on the five folds of LETOR benchmark set when BoostingTree was combined with the
LambdaMART and NDCGboost algorithms with decision stumps as weak hypotheses. The
Y ahoo curve averages over runs on the Yahoo! dataset including results when BoostingTree
was applied with the LambdaMART algorithm with 16-leaf decision trees as weak hypotheses,
and the NDCGboost algorithm with 16-, 32-, and 64-leaf decision trees. The chess curve
averages over runs on the B84 and the E97 move ordering datasets when the LambdaMART
and the NDCGboost algorithms (with 32-leaf decision trees) where used as the base algorithm
in BoostingTree. The minimum (min) and the maximum (max) of the curves over all above
runs is also included. The curve for

√
tr (corresponding to the theoretical bound) is added for

comparison to the left figure.

on how good weak hypotheses can be constructed from a randomly selected con-
strained tree, since even for regression/decision trees of moderate size the number
of constraints becomes huge, and therefore the bandit algorithm essentially just
samples uniformly from the constraints. BoostingTree relates to bandit algo-
rithms in the sense that it performs better when bandit algorithms perform well,
while mitigating the problem of raw features by revisiting the selection choices on
the feature set. For the web search datasets the BoostingTree algorithm man-
ages to build better performing models when the number of hypotheses has to be
limited, while achieving similar performance as the base boosting algorithm when
the number of hypotheses is unbounded.

5 Conclusions

In this paper we provided a tree based strategy, BoostingTree, that builds sev-
eral sequences of weak hypotheses in parallel, and extends the ones that are likely
to yield a good model. The new strategy aims to improve the training speed
by constraining the weak learners, and simultaneously, it generates small models
that have better performance than the ones obtained by the standard variant of
the boosting algorithm with early stopping. Theoretical analysis shows that the
BoostingTree algorithm is consistent. Moreover, at least Ω(

√
tr) of the weak hy-

potheses are allocated to the leading model, which in practice seems to be even
closer to Ω(tr/ ln tr) (where tr is the number of weak hypotheses used in building
the tree up to the end of the rth round of the algorithm). Experimental results are
provided for two standard learning to rank benchmarks, and one additional bench-
mark constructed for move ordering in chess. On these benchmarks we conclude
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that the new algorithm performs favorably in comparison to the standard boosting
algorithms, and to some randomized variants that use the theory of multi-armed
bandits to speed up the learning process. At early stages of the training process,
BoostingTree provides more accurate solutions, while later the resulting models
are computationally less expensive with similar (ranking) performance.

There are several open questions left in the theoretical analysis, in particular
on the tightness of the bound on the number of weak hypotheses allocated to the
leading model. We expect that for certain boosting algorithms and well-designed
constraints on the weak learner, the rate at which the BoostingTree algorithm
converges to the ‘optimal’ model can be bounded. Comparing and combining the
algorithm with pruning and l1 regularization techniques applied for boosting are
also to be investigated, as well as the performance of the algorithm for more general
machine learning tasks. Furthermore, smart, adaptive choices of the constraints
used in extending existing models in BoostingTree would also be of natural
interest.
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Järvelin K, Kekäläinen J (2000) IR evaluation methods for retrieving highly relevant docu-

ments. In: Proceedings of the 23rd International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR), pp 41–48

Jones DR, Perttunen CD, Stuckman BE (1993) Lipschitzian optimization without the lipschitz
constant. Journal of Optimization Theory and Applications 79(1):157–181
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