189 research outputs found
Magnification Control in Self-Organizing Maps and Neural Gas
We consider different ways to control the magnification in self-organizing
maps (SOM) and neural gas (NG). Starting from early approaches of magnification
control in vector quantization, we then concentrate on different approaches for
SOM and NG. We show that three structurally similar approaches can be applied
to both algorithms: localized learning, concave-convex learning, and winner
relaxing learning. Thereby, the approach of concave-convex learning in SOM is
extended to a more general description, whereas the concave-convex learning for
NG is new. In general, the control mechanisms generate only slightly different
behavior comparing both neural algorithms. However, we emphasize that the NG
results are valid for any data dimension, whereas in the SOM case the results
hold only for the one-dimensional case.Comment: 24 pages, 4 figure
Readout for intersatellite laser interferometry: Measuring low frequency phase fluctuations of HF signals with microradian precision
Precision phase readout of optical beat note signals is one of the core
techniques required for intersatellite laser interferometry. Future space based
gravitational wave detectors like eLISA require such a readout over a wide
range of MHz frequencies, due to orbit induced Doppler shifts, with a precision
in the order of at frequencies between
and . In this paper, we present phase
readout systems, so-called phasemeters, that are able to achieve such
precisions and we discuss various means that have been employed to reduce noise
in the analogue circuit domain and during digitisation. We also discuss the
influence of some non-linear noise sources in the analogue domain of such
phasemeters. And finally, we present the performance that was achieved during
testing of the elegant breadboard model of the LISA phasemeter, that was
developed in the scope of an ESA technology development activity.Comment: submitted to Review of Scientific Instruments on April 30th 201
The Gravitational Universe
The last century has seen enormous progress in our understanding of the Universe. We know the life cycles of stars, the structure of galaxies, the remnants of the big bang, and have a general understanding of how the Universe evolved. We have come remarkably far using electromagnetic radiation as our tool for observing the Universe. However, gravity is the engine behind many of the processes in the Universe, and much of its action is dark. Opening a gravitational window on the Universe will let us go further than any alternative. Gravity has its own messenger: Gravitational waves, ripples in the fabric of spacetime. They travel essentially undisturbed and let us peer deep into the formation of the first seed black holes, exploring redshifts as large as z ~ 20, prior to the epoch of cosmic re-ionisation. Exquisite and unprecedented measurements of black hole masses and spins will make it possible to trace the history of black holes across all stages of galaxy evolution, and at the same time constrain any deviation from the Kerr metric of General Relativity. eLISA will be the first ever mission to study the entire Universe with gravitational waves. eLISA is an all-sky monitor and will offer a wide view of a dynamic cosmos using gravitational waves as new and unique messengers to unveil The Gravitational Universe. It provides the closest ever view of the early processes at TeV energies, has guaranteed sources in the form of verification binaries in the Milky Way, and can probe the entire Universe, from its smallest scales around singularities and black holes, all the way to cosmological dimensions
Recommended from our members
The highly potent AhR agonist picoberin modulates Hh-dependent osteoblast differentiation
Identification and analysis of small molecule bioactivity in target-agnostic cellular assays and monitoring changes in phenotype followed by identification of the biological target are a powerful approach for the identification of novel bioactive chemical matter in particular when the monitored phenotype is disease-related and physiologically relevant. Profiling methods that enable the unbiased analysis of compound-perturbed states can suggest mechanisms of action or even targets for bioactive small molecules and may yield novel insights into biology. Here we report the enantioselective synthesis of natural-product-inspired 8-oxotetrahydroprotoberberines and the identification of Picoberin, a low picomolar inhibitor of Hedgehog (Hh)-induced osteoblast differentiation. Global transcriptome and proteome profiling revealed the aryl hydrocarbon receptor (AhR) as the molecular target of this compound and identified a cross talk between Hh and AhR signaling during osteoblast differentiation
The Gravitational Universe
The last century has seen enormous progress in our understanding of the Universe. We know the life cycles of stars, the structure of galaxies, the remnants of the big bang, and have a general understanding of how the Universe evolved. We have come remarkably far using electromagnetic radiation as our tool for observing the Universe. However, gravity is the engine behind many of the processes in the Universe, and much of its action is dark. Opening a gravitational window on the Universe will let us go further than any alternative. Gravity has its own messenger: Gravitational waves, ripples in the fabric of spacetime. They travel essentially undisturbed and let us peer deep into the formation of the first seed black holes, exploring redshifts as large as z ~ 20, prior to the epoch of cosmic re-ionisation. Exquisite and unprecedented measurements of black hole masses and spins will make it possible to trace the history of black holes across all stages of galaxy evolution, and at the same time constrain any deviation from the Kerr metric of General Relativity. eLISA will be the first ever mission to study the entire Universe with gravitational waves. eLISA is an all-sky monitor and will offer a wide view of a dynamic cosmos using gravitational waves as new and unique messengers to unveil The Gravitational Universe. It provides the closest ever view of the early processes at TeV energies, has guaranteed sources in the form of verification binaries in the Milky Way, and can probe the entire Universe, from its smallest scales around singularities and black holes, all the way to cosmological dimensions
Versuche zur Synthese eines [2_2]Phans des Azuleno[2,1,8-ija]azulens
SIGLEAvailable from TIB Hannover: DW 2206 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman
Implementing the SCAN Language by Neural Networks
The real-time encryption of pictures is an important subject for many applications, e.g. television broadcast stations, network security, etc. The paper shows how the previously introduced SCAN encryption method can be easily implemented using binary neural network autoassociative memory
- …