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We consider different ways to control the magnification in self-organizing
maps (SOM) and neural gas (NG). Starting from early approaches of
magnification control in vector quantization, we then concentrate on
different approaches for SOM and NG. We show that three structurally
similar approaches can be applied to both algorithms: localized learning,
concave-convex learning, and winner relaxing learning. Thereby, the
approach of concave-convex learning in SOM is extended to a more general
description, whereas the concave-convex learning for NG isnew. In general,
the control mechanisms generate only slightly different behavior comparing
both neural algorithms. However, we emphasize that the NG results are
valid for any data dimension, whereas in the SOM case the results hold only
for the one-dimensional case.

1 Introduction

Vector quantization is an important task in data processing, pattern recog-
nition and control (Fritzke, 1993; Haykin, 1994; Linde, Buzo, & Gray,
1980; Ripley, 1996). A large number of different types have been dis-
cussed, (for an overview, refer to Haykin, 1994; Kohonen, 1995; Duda
& Hart, 1973). Neural maps are a popular type ofneural vector quan-
tizersthat are commonly used in, for example, data visualization,feature
extraction, principle component analysis, image processing, classification
tasks, and acceleration of common vector quantization (de Bodt, Cot-
trell, Letremy, & Verleysen, 2004). Well known approaches are the Self-
Organizing Map (SOM) (Kohonen, 1995), the neural gas (NG) (Martinetz,
Berkovich, & Schulten, 1993), elastic net (EN) (Durbin & Willshaw,
1987) and generative topographic mapping (GTM) (Bishop, Svensén, &
Williams 1998).

In vector quantization, data vectorsv ∈ R
d are represented by a few

codebooks or weight vectorswi, wherei is an arbitrary index. Several cri-
teria exist to evaluate the quality of a vector quantizer. The most common
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one is the squared reconstruction error. However, other quality criteria are
also known, for instance topographic quality for neighborhood preserving
mapping approaches (Bauer & Pawelzik, 1992; Bauer, Der, & Villmann,
1999), optimization of mutual information (Linsker, 1989)and other cri-
teria (for an overview, see Haykin, 1994). Generally, a faithful represen-
tation of the data space by the codebooks is desired. This property is
closely related to the so-called magnification, which describes the relation
between data and weight vector density for a given model. Theknowledge
of magnification of a map is essential for correct interpretation of its output
(Hammer & Villmann, 2003). In addition, explicit magnification control is
a desirable property of learning algorithms, if depending on the respective
application, only sparsely covered regions of the data space have to be em-
phasized or, conversely, suppressed. The magnification canbe explicitly
expressed for several vector quantization models. Usually, for these ap-
proaches the magnification can be expressed by a power law between the
codebook vector densityρ and the data densityP . The respective exponent
is calledmagnification exponentor magnification factor. As explained in
more detail below, the magnification is also related to otherproperties of
the map, for example, reconstruction error as well as mutualinformation.
Hence, control of magnification is influencing these properties too.

In biologically motivated approaches, magnification can also be seen
in the context of information representation in brains, forinstance, in the
senso-motoric cortex (Ritter, Martinetz, & Schulten, 1992). Magnification
and its control can be related to biological phenomena like the perceptual
magnet effect, which refers to the fact that rarely occurring stimuli are dif-
ferentiated with high precision whereas frequent stimuli are distinguished
only in a rough manner (Kuhl, 1991; Kuhl, Williams, Lacerda,Stevens,
& Lindblom, 1992). It is a kind of attention-based learning with inverted
magnification, that is, rarely occurring input samples are emphasized by
an increased learning gain (Der & Herrmann, 1992; Herrmann,Bauer, &
Der, 1994). This effect is also beneficial in technical systems. In remote-
sensing image analysis, for instance, seldomly found ground cover classes
should be detected, whereas usual (frequent) classes with broad variance
should be suppressed (Merényi & Jain, 2004; Villmann, Mer´enyi & Ham-
mer, 2003). Another technical environment for magnification control is
robotics for accurate description of dangerous navigationstates (Villmann
& Heinze, 2000).

In this article we concentrate on a general framework for magnification
control in SOM and NG. In this context, we briefly review the most im-
portant approaches. One approach for SOM is generalized, and afterward,
it is transferred to NG. For this purpose, we first give the basic notations,
followed in section 3 by a more detailed description of magnification and
early approaches related to the topic of magnification control, including
a unified approach for controlling strategies. The magnification control
approaches of SOM are described according to the unified framework in
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section 4, whereby one of them is significantly extended. Thesame pro-
cedure is applied to NG in section 5. Again, one of the controlapproaches
presented in this section is new. A short discussion concludes the article.

2 Basic Concepts and Notations in SOM and
NG

In general, neural maps project data vectorsv from a (possibly high-
dimensional) data manifoldD ⊆R

d onto a setA of neuronsi, which is
formally written asΨD→A : D → A. Each neuroni is associated with a
pointerwi ∈R

d, all of which establish the setW = {wi}i∈A. The map-
ping description is a winner-take-all rule, that is, a stimulus vectorv ∈ D
is mapped onto that neurons ∈ A with the pointerws being closest to the
actual presented stimulus vectorv,

ΨD→A : v 7→ s (v) = argmin
i∈A

‖v −wi‖ . (2.1)

The neuron s is called winner neuron. The set Ri =
{v ∈ D|ΨD→A (v) = i} is called the(masked) receptive fieldof the
neuroni. The weight vectors are adapted during the learning processsuch
that the data distribution is represented.

For further investigations, we describe SOM and NG as our focused
neural maps in more detail. During the adaptation process a sequence of
data pointsv ∈ D is presented to the map with respect to the data distribu-
tionP (D). Then the most proximate neurons according to equation (2.1)
is determined, and the pointerws, as well as all pointerswi of neurons in
the neighborhood ofs, are shifted towardsv, according to

△wi = ǫh (i,v,W) (v −wi) . (2.2)

The property of “being in the neighborhood ofs” is represented by a neigh-
borhood functionh (i,v,W). The neighborhood function is defined as

hλ (i,v,W) = exp

(

−
ki (v,W)

λ

)

(2.3)

for the NG, whereki (v,W) yields the number of pointerswj for which
the relation‖v −wj‖ < ‖v −wi‖ is valid (Martinetz et al., 1993); espe-
cially, we havehλ (s,v,W) = 1.0. In case of SOM the setA of neurons
has a topological structure usually chosen as a hypercube orhexagonal lat-
tice. Each neuroni has a fixed positionr (i). The neighborhood function
has the form

hσ (i,v,W) = exp

(

−
‖r (i)− r (s (v))‖A

2σ2

)

. (2.4)
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In contrast to the NG, the neighborhood function of SOM is evaluated in
the output spaceA according to its topological structure. This difference
causes the significantly different properties of both algorithms. For the
SOM there does not exist any energy function such that the adaptation
rule follows the gradient descent (Erwin, Obermayer, & Schulten, 1992).
Moreover, the convergence proofs are only valid for the one-dimensional
setting (Cottrell, Fort & Pages, 1998, Ritter et al., 1992).The introduction
of an energy function leads to different dynamics as in the EN(Durbin
& Willshaw, 1987) or new winner determination rule (Heskes 1999). The
advantage of the SOM is the ordered topological structure ofneurons inA.
In contrast, in the original NG, such an order is not given. One can extend
the NG to the topology representing network (TRN) such that topological
relations between neurons are installed during learning, although generally
they do not achieve the simple structure as in SOM lattices (Martinetz &
Schulten, 1994). Finally, the important advantage of the NGis that the
adaptation dynamic of the weight vectors follows a potential minimizing
dynamics (Martinetz et al., 1993).

3 Magnification and Magnification Control in
Vector Quantization

3.1 Magnification in Vector Quantization.

Usually vector quantization aims to minimize the reconstruction error
RE =

∑

i

∫

Ri
‖v −wi‖

2 P (v) dv. However, other quality criteria are
also known, for instance, topographic quality (Bauer & Pawelzik, 1992;
Bauer et al., 1999). More generally, one can consider the generalized dis-
tortion error,

Eγ =

∫

D

‖ws − v‖γ P (v) dv. (3.1)

This error is closely related to other properties of the (neural) vector quan-
tizer. One important property is the achieved weight vectordensityρ (w)
after learning in relation to the data densityP (D). Generally, for vector
quantizers one finds the relation

P (w) ∝ ρ (w)α (3.2)

after the converged learning process (Zador 1982). The exponentα is
calledmagnification exponentor magnification factor. The magnification
is coupled with the generalized distortion error (3.1) by

α =
d

d+ γ
(3.3)
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Table 1: Magnification of Different Neural Maps and Vector Quantization Ap-
proaches.

Model Magnification Reference
Elastic net 1 + κ

σ2

1
P ρ̃

Claussen and Schuster (2002)

SOM 1+12M2(σ)
3+18M2(σ)

Dersch and Tavan (1995)

Linsker network 1 Linsker (1989)

LBG d
d+2

Zador (1982)

FSCL 3β+1
3β+3

Galanopoulos and Ahalt (1996)

NG d
d+2

Martinetz et al. (1993)

Note: For SOM,M2 (σ) denotes the 2nd normalized moment of the
neighborhood function depending on the neighborhood rangeσ.

where d is the intrinsic or Hausdorff dimension1 of the data. Begin-
ning with the pioneering work of Amari (1980), which investigated a
resolution-density relation of map formation in a neural field model and
extended the approach of Willshaw and von der Malsburg (1976), for sev-
eral neural map and vector quantizer approaches the magnification relation
has been considered, including the investigation of the relation between
data and model density.

Generally, different magnification factors are obtained for different
vector quantization approaches. An overview of several important mod-
els with known magnification factors is given in Table 1.

For the usual SOMs, mapping a one–dimensional input space onto a
chain of neurons,

αSOM =
2

3
(3.4)

holds in the limit1 ≪ σ ≪ N (Ritter & Schulten, 1986). For small val-
ues of neighborhood rangeσ, the neighborhood ceases to be of influence,
and the magnification rate approaches the valueα = 1

3
(Dersch & Ta-

van, 1995). The influence of different types of neighborhoodfunction was
studied in detail for SOMs in Dersch and Tavan (1995), which extends
the early works of Luttrell (1991) and Ritter (1991). The magnification
depends on the second normalized momentM2 of the neighborhood func-
tion, which itself is determined by the neighborhood rangeσ. Van Hulle

1Several approaches are known to estimate the Hausdorff dimension of data, often
calledintrinsic dimension. One of the best known methods is the Grassberger-Procaccia-
analysis (GP) (Grassberger & Procaccia, 1983; Takens, 1985). For GP, there is a large
number of investigations of statistical properties (e.g.,Camastra and Vinciarelli, 2001;
Eckmann and Ruelle, 1992; Liebert, 1991; Theiler, 1990). For a neural network approach
of intrinsic dimension estimation (based on NG), also in comparison to GP, we refer to
Bruske and Sommer (1998), Camastra & Vinciarelli (2001), Villmann, Hermann and
Geyer (2000), Villmann (2002), and Villmann et al. (2003).
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(2000) extensively discussed the influence of kernel approaches in SOMs.
Results for magnification of discrete SOMs can be found in Ritter (1989)
and Kohonen (1999). These latter problems and approaches will not be
further addressed here.

According to equations (3.3) and (3.1), the SOM minimizes the some-
what exoticE 1

2

distortion error, whereas the NG minimizes the usualE2-
error.

Further, we can observe interesting relations to information-theoretic
properties of the mapping: The information transfer realized by the map-
pingΨD→A, in general, is not independent of the magnification of the map
(Zador, 1982). It has been derived that for an optimal information trans-
fer realizing vector quantizer (or a neural map in our context), the relation
α = 1 holds (Brause, 1992). A vector quantizer designed to achieve an op-
timal information transfer is the Linsker network (Linsker, 1989; see Table
1), or the optimal coding network approach proposed by Brause (1994).

3.2 Magnification Control in Vector Quantization: A General
Framework.

As pointed out in section 1, different application tasks mayrequire dif-
ferent magnification properties of the vector quantizer, that is, the mag-
nification should be controlled. Straightforwardly, magnification control
means changing the value of the magnification factorα for a given vector
quantizer by manipulation of the basic approach.

Consequently, the question is, How one can impact the magnification
factor to achieve ana priori chosen magnification factor? We further ad-
dress this topic in the following. First, we review results from the literature
and put them into a general framework.

The first approaches to influence the magnification of a vectorquan-
tizer are models ofconscience learning, characterized by a modified win-
ner determination. The algorithm by DeSieno (1988) and the frequency
sensitive competitive learning (FSCL) (Ahalt, Krishnamurty, Chen, &
Melton, 1990) belong to this algorithm class. Originally, these approaches
were proposed for equalizing the winner probability of the neural units in
SOM. However, as the neighborhood relation between neuronsis not used
in this approach, it is applicable to each vector quantizer based on winner-
take-all learning. To achieve the announced goal, in the DeSieno model, a
bias termB is inserted into the winner determination rule, equation (2.1),
such that

ΨD→A : v 7→ s (v) = argmin
i∈A

(‖v−wi‖ − B) (3.5)

with the bias termB = γ
(

1
N
− pi

)

, andpi is the actual winning prob-
ability of the neuroni. The algorithm converges such that the winning
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probabilities of all neurons are equalized, which is related to a maximiza-
tion of the entropy, and, hence, the resulted magnification is equal to the
unity. However, an arbitrary magnification can not be achieved. Moreover,
as pointed out in van Hulle (2000), the algorithm shows unstable behav-
ior. FSCL modifies the selection criterion for the best-matching unit by
a fairness termF , which is a function of the winning frequencyωi of the
neurons. Again, the winner determination is modified:

ΨD→A : v 7→ s (v) = argmin
i∈A

(F (ωi) ‖v −wi‖) . (3.6)

As mentioned above, originally it was defined to achieve an equiprobable
quantization too. However, it was shown, this goal can not beachieved by
the original version (Galanopoulos & Ahalt, 1996; van Hulle, 2000). Yet
for one-dimensional data, any givenγ-norm error criterion, equation (3.1),
can be minimized by a specific choice of the fairness function: if F (ωi) is
taken as

F (ωi) = (ωi)
ξ (3.7)

for the one-dimensional case a magnificationαFSCL = 3β+1
3β+3

is achieved,
being equivalent toγ = 2

3β+1
(Galanopoulos & Ahalt, 1996). The diffi-

culties of transferring the one-dimensional result to higher dimensions are,
however, as prohibitive as in SOM.

We now study control possibilities to achievearbitrary magnification,
focusing on SOM and NG bymodification of the learning rule. We em-
phasize again that for SOM, the results hold only for the one-dimensional
case, whereas for NG, the more general case of arbitrary dimensionality is
valid. Thus, the following direction of modifications of thegeneral learn-
ing rule, equation (2.2),

△wi = ǫh (i,v,W) (v −wi) ,

can serve as a general framework:

1. Localized learning: Introduction of a multiplicative factor by a local
learning rateǫi

2. Winner-relaxing learning: Introduction of winner relaxing by
adding a winner-enhancing (relaxing) termR

3. Concave-convex learning: Scaling of the learning shift by powersξ
in the factor(v −wi)

ξ

These three directions serve as axes for a taxonomy in the following sec-
tion. We focus on SOM and NG as popular neural vector quantizers. We
explain, expand and develop the respective methodologies of magnifica-
tion control for these models. The localized and the winner relaxing learn-
ing for SOM and NG are briefly reviewed. In particular, localized learning
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for SOM was published in Bauer, Der, and Herrmann, (1996) whereas win-
ner relaxing learning for both SOM and NG and localized learning in NG
were previously developed by the authors (Claussen, 2003, 2005; Claussen
& Villmann, 2003a; Villmann, 2000). The concave-convex learning for
SOM is extended here to a more general approach compared to its origins
(Zheng & Greenleaf, 1996). The concave-convex learning forNG is new
too.

4 Controlling the Magnification in SOM

Within the general framework outlined in section 3.2, we nowconsider the
three learning rule modifications for SOM.

4.1 Insertion of a Multiplicative Factor: Localized Learning.

The first choice is to add a factor in the SOM learning rule. An established
realization is thelocalized learning, the biological motivation of which
is the perceptual magnet effect (Bauer et al., 1996). For this purpose, an
adaptive local learning step sizeǫs(v) is introduced in equation (2.2) such
that the new adaptation rule reads as

△wi = ǫs(v)hσ (i,v,W) (v −wi) (4.1)

wheres (v) is being the best-matching neuron with respect to equation
(2.1). The local learning ratesǫi = ǫ (wi) depend on the stimulus density
P at the position of their weight vectorswi via

〈ǫi〉 = ǫ0P (wi)
m , (4.2)

where the brackets〈. . .〉 denote the average in time. This approach leads
to the new magnification law,

α′

localSOM = αSOM · (m+ 1) , (4.3)

where m appears to be an explicit control parameter (Bauer et al., 1996).
Hence, an arbitrary predefined magnification can be achieved.

In applications, one has to estimate the generally unknown data distri-
butionP , which may lead to numerical instabilities of the control mecha-
nism (van Hulle, 2000).

4.2 Winner-Relaxing SOM and Magnification Control.

Recently, a new approach for magnification control of the SOMby a gener-
alization (Claussen, 2003, 2005) of the winner-relaxing modification (Ko-
honen, 1991) was derived, giving a control scheme, which is independent

8



of the shape of the data distribution (Claussen 2005). We refer to this
algorithm as WRSOM.

In the original winner-relaxing SOM, an additional term occurs in
learning for the winning neuron only, implementing a relaxing behavior.
The relaxing force is a weighted sum of the difference between the weight
vectors and the input according to their neighborhood relation. The relax-
ing term was introduced to obtain a learning dynamic for SOM according
to an average reconstruction error taking into account the effect of shifting
Voronoi borders.

The original learning rule is added by a winner relaxing termR (µ, κ)
as

△wi = ǫhσ (i,v,W) (v −wi) +R (µ, κ) , (4.4)

with R (µ, κ) being

R (µ, κ) = (µ+ κ) (v −wi) δis (4.5)

−κδis
∑

j

hσ (j,v,W) (v −wj) ,

depending on weighting parametersµ andκ. Forµ = 0 andκ = 1
2
, the

original winner relaxing SOM is obtained (Kohonen, 1991). Surprisingly,
it has been shown that the magnification is independent ofµ (Claussen,
2003, 2005). Only the choice ofκ contributes to the magnification:

α′

WRSOM =
2

κ + 3
. (4.6)

The stability range is|κ| ≤ 1, which restricts the accessible magnification
range to1

2
≤ α′

WRSOM ≤ 1. More detailed numerical simulations and
stability analysis can be found in Claussen (2005).

The advantage of winner relaxing learning is that no estimate of the
generally unknown data distribution has to be made, as required in the
local learning approach above.

4.3 Concave-Convex Learning.

The third structural possibility for control according to our framework is to
applyconcave or convex learningin the learning rule. This approach was
introduced in Zheng and Greenleaf (1996). Here, we extend this approach
to a more general variant.

Originally, an exponentξ is introduced in the general learning rule
such that equation (2.2) now reads as

△wi = ǫhσ (i,v,W) (v −wi)
ξ (4.7)
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with
(v−wi)

ξ def
= (v −wi) · ‖v −wi‖

ξ−1 . (4.8)

Thereby, two different possibilities are proposed:ξ = 1
κ

with κ > 1, κ ∈N
andκ is odd (convex learning), or one simply takesξ > 1, ξ ∈N andξ is
odd (concave learning). This gives the magnification

α′

concave/convexSOM =
2

ξ + 2
(4.9)

= αSOM ·
3

ξ + 2
(4.10)

which allows an explicit magnification control. Yet this approach allows
only a rather rough control aroundξ = 1: the neighboring allowed values
areξ = 1

3
andξ = 3 corresponding to magnificationsα′

concave/convexSOM =
6
7

andα′

concave/convexSOM = 2
5
, respectively. Therefore, greater flexibility

would be of interest.
For this purpose, we are seeking for a generalization of bothconcave

and convex learning. As a more general choice we takeξ to be real, that
is, ξ ∈ R. If we do so, the same magnification equation (4.9) is obtained.
The proof of the magnification law is given in appendix A. Obviously, the
choicesξ = 1

κ
andξ = κ > 1, κ ∈N andκ being odd as made in Zheng

and Greenleaf (1996) are special cases of the now general approach.
We considered the numerical behaviour of the magnification control

of the WRSOM using a one-dimensinal chain of50 neurons. The data
distribution was chosen in agreement with Bauer et al. (1996) asP (x) =
sin(πx).The theoretical entropy maximum of the winning probabilities of
the neuronspi is

∑N
i=1 pi log(pi) = log(N) giving the value3.912 for

N = 50. The results in dependence onξ for different neighborhood ranges
σ are depicted in Figure 1.

According to the theoretical prediction, the output entropy is maxi-
mized for smallξ, and for largeξ, an magnification exponent zero is
reached corresponding to an equidistant codebook without adaptation to
the input distribution. Forσ < 1, the turnover is shifted toward smaller
values ofξ, and forξ ≪ 1, σ ≪ 1, fluctuations increase.

Further, as in the WRSOM, the advantage of concave-convex learning
is that no estimate of the generally unknown data distribution has to be
made as before in localized learning.
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σ=0.5

Figure 1:Output entropy for concave and convex learning. An input density of
P (x) = sin(πx) was presented to an one-dimensional chain ofN = 50 neu-
rons after106 learning steps of stochastic sequential updating, averaged over105

inputs, and learning rateǫ = 0.01, fixed.

5 Magnification Control in Neural Gas

In this section we transfer the ideas of magnification control in SOM to
the NG, keeping in mind the advantage that the results then are valid for
any dimension.

5.1 Multiplicative Factor - Localized Learning.

The idea oflocalized learningis now applied to NG (Herrmann & Vill-
mann 1997). Hence, we have the localized learning rule

△wi = ǫs(v)hλ (i,v,W) (v −wi) , (5.1)

with s (v) again being the best-matching neuron with respect to equation
(2.1) andǫs(v) is the local learning chosen as in equation (4.2). This ap-
proach gives a similar result as for SOM,

α′

localNG = αNG · (m+ 1) , (5.2)
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Figure 2: Local learningfor NG: Plot of the entropyH for maps trained with
different magnification control parametersm (d = 1 (⋄), d = 2 (+), d = 3 (�)).
The arrows indicate the theoretical values ofm (m = 2, m = 1, m = 2/3, resp.)
which maximizes the entropy of the map.

and, hence, allows a magnification control (Villmann, 2000). However,
we have similar restrictions as for SOM: in actual applications one has to
estimate the generally unknown data distributionP .

The numerical study shows that the approach can also be used to
increase the mutual information of a map generated by a NG (Vill-
mann, 2000). As for WRSOM, we use a standard setup as in Villmann
(2000) of 50 Neurons and107 training steps with a probability density
P (x1 . . . xd) =

∏

i sin(πxi), x ∈ [0, 1], and with parametersλ = 1.5
fixed andǫ decaying from0.5 to 0.05. The entropy of the resulting map
computed for an input dimension of1, 2 and3 is plotted in Figure 2.

5.2 Winner-Relaxing NG.

The winner-relaxing NG (WRNG) was first studied in Claussen and Vill-
mann (2003a). According to the WRSOM approach, one uses an additive
winner relaxing termR (µ, κ) to the original learning rule:

△wi = ǫhλ (i,v,W) (v −wi) +R (µ, κ) , (5.3)
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with R (µ, κ) being as in equation (4.5). The resulting WRNG-
magnification for small neighborhood valuesλ with λ → 0 but not van-
ishing is given by Claussen and Villmann (2005):

α′

WRNG =
1

1− κ

d

d+ 2
. (5.4)

Thereby, the magnification exponent appears to be independent of an ad-
ditional diagonal term (controlled byµ) for the winner the same as in WR-
SOM; againµ = 0 is the usual setting. If the same stability borders|κ| = 1
of the WRSOM also apply here, one can expect to increase the NGexpo-
nent by positive values ofκ, or to lower the NG exponent by factor1/2 for
κ = −1.

However, one has to be cautious when transferring theλ → 0 result
obtained above (which would require to increase the number of neurons as
well) to a realistic situation where a decrease ofλ with time will be limited
to a final finite value to avoid the stability problems found inHerrmann and
Villmann (1997). For a finiteλ the maximal coefficienthλ that contributes
to the averaged learning shift is given by the prefactor of the second but
one winner, which is given byeλ (Claussen & Villmann, 2005). For the
NG, however, the neighborhood is defined by the rank list. Asthe winner
term of the NG is not present in the winner relaxing term (forµ = 0), all
terms share the factore−λ by hλ(k) = e−λhλ(k − 1) which indicates that
in the discretized algorithmκ has to be rescaled bye+λ to agree with the
continuum theory. The numerical investigation indicates that this prefactor
applies for finiteλ and number of neurons. The scaling of the position of
the entropy maximum with input dimension is in agreement with theory,
as well as the prediction of the opposite sign ofκ that has to be taken to
increase mutual information.

Numerical studies show that winner-relaxing learning can also be used
to increase the mutual information of a NG vector quantization. The
entropy shows a dimension-dependent maximum approximately at κ =
2

d+2
eλ (see Figure 3). In any case, within a broad range around the optimal

κ, the entropy is close to the maximum.
The advantage of the method is to be independent on estimation of

the unknown data distribution as the SOM equivalent WRSOM. Further,
again as in the WRSOM, the magnification of WRNG is independent in the
first order on the diagonal term, controlled byµ. Numerical simulations
have shown that the contribution in higher orders is marginal (Claussen &
Villmann, 2003b). More pronounced is the influence of the diagonal term
on stability. According to the larger prefactor, no stable behavior has been
found for |µ| ≥ 1, thereforeµ = 0 is the recommended setting (Claussen
&Villmann, 2005).
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Figure 3: Winner relaxing learningfor NG: Plot of the entropyH curves for
varying values ofκ for one-, two and three-dimensional data. The entropy has the
maximum if the magnification equals the unit (Zador 1982). The arrows indicate
theκ-values for the respective data dimensions.

5.3 Concave-Convex Learning.

We now consider the third modification known from SOM, the concave-
convex learning approach but in its new, developed general variant,

△wi = ǫhλ (i,v,W) (v −wi)
ξ , (5.5)

with ξ ∈ R and the definition (4.8). It is proved in the appendix B that the
resulting magnification is

α′

concave/convexNG =
d

ξ + 1 + d
, (5.6)

depending on the intrinsic data dimensionalityd. This dependency is in
agreement with the usual magnification law of NG, which is also related
to the data dimension.

The respective numerical simulations with the parameter choice as be-
fore are given in Figure 4. In contrast to concave-convex SOMwhere
α′ = 1 can be achieved for largeξ, hereα′ is bounded by d

d+1
; information

optimal learning is not possible in cases of low-dimensional data.
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0.1 1 10ξ

3.8

3.9

H

Figure 4: Concave-convex learningfor NG: Plot of the entropyH curves for
varying values ofξ for one-, two and three-dimensional data. The entropy can be
enhanced by convex learning in each case (dashed line:d = 1 , with 108 learning
steps).

6 Discussion

According to the given general framework, we studied three structurally
different approaches for magnification control in SOM and NG. All meth-
ods are capable to control the magnification with more or lessaccuracy.
Yet, they differ in properties (e.g., stability range, density estimation). No
approach yet shows a clear advantage. The choice of the optimal algorithm
may depend on the particular problem and implementation constraints. In
particular, several problems occur in actual applications. First, in the SOM
case, all result are only valid for the one-dimensional case, because all in-
vestigations are based on the usual convergence dynamic. However, the
SOM dynamics is analytically treatable only in the one-dimensional set-
ting and higher-dimensional cases that factorize. Moving away from these
special cases causes a systematic shift in magnification control, as numer-
ically shown in Jain and Merényi (2004). In actual applications, a quan-
titative comparison with theory is quite limited due to several influences
which are not easily tractable. First, the data density has to be estimated,
which is generally difficult (Merényi & Jain, 2004); second, the intrinsic
dimension has to be determined; and third, the measurement of the mag-
nification from the density of weight vectors is rather coarse, especially in
higher dimensions.
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Table 2: Comparison of Magnification Control for the Different Control Ap-
proaches for SOM and NG (d = 1 for SOM).

SOM NG
Local (m+ 1)αSOM (m+ 1)αNG

learning (Bauer et al., 1996) (Villmann 2000)

Winner-relaxing 3
κ+3αSOM

1
1−καNG

learning (Claussen, 2003, 2005) (Claussen & Villmann, 2005)

Concave-convex 3
ξ+2αSOM

d+2
d+ξ+1αNG

learning (in section 4.3; in section 5.3
Zheng & Greenleaf, 1996)

Only some special cases can be handled adequately. In particular, max-
imizing mutual information can be controlled easily by observation of the
entropy of winning probabilities of neurons or consideration of inverted
magnification in case of available auxiliary class information, that is, la-
beled data (Merényi & Jain, 2004). Thus, actual applications have to be
done carefully using some heuristics. Interesting, successful applications
of magnification control (by local learning) in satellite remote sensing im-
age analysis can be found in Merényi and Jain (2004), (Villmann, 1999;
Villmann et al., 2003).

Summarizing the above approaches of magnification control,we ob-
tain the good news that the possibilities for magnification control known
from SOM can be successfully transferred to the NG learning in all three
cases. The achieved theoretical magnifications are collected in Table 2.

The interesting point is that the local learning approach, as well as
concave-convex learning, yields structurally similar modification factors
for the new magnification. However, a magnification of1 is not reachable
by concave-convex learning in case of NG. In case of the winner relaxing
approach, we have a remarkable difference: in contrast to the WRSOM,
where the relaxing term has to be inverted (κ < 0) to increase the magni-
fication exponent, for the NG, positive values ofκ are required to increase
the magnification factor.

Appendix A: Magnification Law of the Generalized Concave-Convex
Learning for the Self-Organizing Map

In this appendix we prove the magnification law of the generalized
concave-convex learning for SOM: the exponent in equation (4.7) is re-
quired to beξ ∈ R and keeping further in mind the definition (4.8). Since
the convergence proofs of SOM are only valid for the one-dimensional
setting, we switch fromw tow and fromv to v.
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In the continuum approach, we can replace the index of the neuron by
its position or locationr (Ritter et al., 1992). Further, the neighborhood
functionhσ depends only on the difference of the locationr to rs(v) as the
location of the winning neuron. Then we have in the equilibrium for the
learning rule equation (4.7),

∫

hσ

(

r − rs(v)
)

(v − w (r))ξ P (v) dv = 0. (A.1)

We perform the usual approach of expanding the integrand in aTaylor
series in powers ofς = s (v) − r and evaluating atr (Ritter & Schulten,
1986; Hertz, Krogh, & Palmer, 1991; Zheng & Greenleaf, 1996). This
gives

v = w (r + ς) , (A.2)

hσ (s (v)− r) becomeshσ (ς) = hσ (−ς), and

P (v) = P (w (r + ς)) ≈ P (w) + ςP ′ (w)w′ (r) . (A.3)

Further,dv = dw (r + ς) = w′ (r + ς) dς can be rewritten as

w′ (r + ς) dς ≈ (w′ + ςw′′) dς, (A.4)

and forv − w (r) = w (r + ς)− w (r) we get

w (r + ς)− w (r) ≈ ςw′ +
1

2
ς2w′′ = ς

(

w′ +
1

2
ςw′′

)

. (A.5)

Because of(v − w (r))ξ in equation (A.1), we consider
(

w′ + 1
2
ςw′′

)ξ
:

(

w′ +
1

2
ςw′′

)ξ

≈ (w′)
ξ

(

1 +
ς · ξ

2

w′′

w′

)

. (A.6)

Further, because of the definition (4.8), the powerςξ has to be interpreted
as

ςξ = ς · |ς|ξ−1 , (A.7)

which is an odd function inς.

Collecting now (A.2)–(A.7) we get in (A.1)

0 =

∫

hσ (ς) · ς · |ς|
ξ−1 · (w′)

ξ
·

(

1 +
1

2
ξw′′ (w′)

−1
ς

)

(A.8)

× (P (w) + ςP ′ (w)w′ (r)) (w′ + ςw′′) dς.

17



Sinceς · |ς|ξ−1 is odd, the term of lowest order inς vanishes according
to the rotational symmetry ofhσ (ς). Further, in our approximation, we
ignore terms behindς2. Hence, the above equation can be simplified as

0 = (w′)
ξ

(

P ′ (w) (w′)
2
+

ξ + 2

2
P (w)w′′

)
∫

hσ (ς) · ς
2 · |ς|ξ−1 dς.

(A.9)
From there we get

ρ =

∣

∣

∣

∣

dr

dw

∣

∣

∣

∣

= P
2

2+ξ (A.10)

and, hence,

αconcave/convexSOM =
2

2 + ξ
, (A.11)

which completes the proof.

Appendix B: Magnification Law of the Generalized Concave-Convex
Learning for Neural Gas

For the derivation of the magnification for the generalized concave-convex
learning in case of magnification-controlled NG, first we have the usual
continuum assumption (Ritter et al., 1992). The further treatment is in
complete analogy to the derivation of the magnification in the usual NG
(Martinetz et al., 1993). Letr be the difference vector

r = v −wi, (B.1)

The winning rankki (v,W) in the neighborhood functionhλ (i,v,W) in
equation (2.3) depends only onr, therefore, we introduce the new variable

x (r) = r̂ · ki (r)
1

d , (B.2)

which can be assumed as monotonously increasing with‖r‖. We define
thed× d–Jacobian

J (x) = det

(

∂rk
∂xl

)

. (B.3)
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Starting from the new learning rule,

△wi = ǫhλ (i,v,W) (v −wi)
ξ , (B.4)

again consider the averaged change,

〈△wi〉 =

∫

P (v) hλ (i,v,W) (v −wi)
ξ dv . (B.5)

If hλ (i,v,W) in equation (2.3) rapidly decreases to zero with increasing
r, we can replace the quantitiesr (x), J (x) by the first terms of their
respective Taylor expansions around the pointx = 0, neglecting higher

derivatives. We obtain

x (r) = r (τdρ (wi))
1

d

(

1 +
r · ∂rρ (wi)

d · ρ (wi)
+O

(

r
2
)

)

, (B.6)

which corresponds to

r (x) =

(

1− (τdρ (wi))
−

1

d · x·∂rρ(wi)
d·ρ(wi)

+O (x2)
)

x (τdρ (wi))
1

d

(B.7)

with

τd =
π

d
2

Γ
(

d
2
+ 1

) (B.8)

as the volume of ad–dimensional unit sphere (Martinetz et al., 1993). We
defineϕ = τdρ (wi). Further, we expandJ (x) and obtain

J (x) =

(

J (0) + xk
∂J

∂xk

+ . . .

)

(B.9)

=
1

ϕ

(

1− ϕ−
1

d

(

1 +
1

d

)

· x ·
∂rρ

ρ

)

+O
(

x2
)

(B.10)

and, hence,

∂J

∂x

∣

∣

∣

∣

x=0

= −ϕ−(1+ 1

d)
∂rρ

ρ
. (B.11)
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After collecting all replacements, (B.5) becomes

〈△wi〉 = ǫ · ϕ−
ξ

d

∫

D

dx hλ (x) · x
ξ ·

·
(

P + ϕ−
1

d · x · ∂rP + . . .
)

· (B.12)

·

(

1

ϕ
−

(

1 +
1

d

)

ϕ−(1+ 1

d) · x ·
∂rρ

ρ
+ . . .

)

· (B.13)

·

(

1− ϕ−
1

d · x ·
∂rρ

d · ρ
+ . . .

)ξ

, (B.14)

with new integration variablex. We use the approximation

(

1− ϕ−
1

d · x ·
∂rρ

d · ρ
+ . . .

)ξ

≈ 1− ξϕ−
1

d · x ·
∂rρ

d · ρ
+ . . . (B.15)

and get

〈△wi〉 = ǫ · ϕ−
ξ
d

∫

D

dx hλ (x) · x
ξ

·
(

P + ϕ−
1

d · xξ · ∂rP + . . .
)

(B.16)

·

(

1

ϕ
−

(

1 +
1

d

)

ϕ−(1+ 1

d) · xξ ·
∂rρ

ρ
+ . . .

)

(B.17)

·

(

1− ξϕ−
1

d · xξ ·
∂rρ

d · ρ
+ . . .

)

. (B.18)

In the equilibrium〈△wi〉 = 0, we have

0 =

∫

D

dx hλ (x) · x
ξ ·

(

P + ϕ−
1

d · xξ · ∂rP + . . .
)

·

(

1

ϕ
−

(

1 +
1

d

)

ϕ−(1+ 1

d) · xξ ·
∂rρ

ρ
+ . . .

)

(B.19)

·

(

1− ξϕ−
1

d · xξ ·
∂rρ

d · ρ
+ . . .

)

. (B.20)

Because of the rotational symmetry ofhλ, we can neglect odd power terms
in x. Remaining terms are of even power order. Again, according to equa-
tion (4.8), we takexξ = x· |x|ξ−1, and, hence,xξ itself acts as an odd term.
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Therefore, only terms containingxξ+k with oddk contribute. Finally, con-
sidering the non-vanishing terms and neglecting higher order terms, we
find the relation

∂rP

P (wi)
=

∂rρ

ρ

(

d

d+ ξ + 1

)

, (B.21)

which is the desired result.
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of Selbstorganisation Von Adaptivem Verfahren (SOAVE’2000) Ilmenau, pages
125–134, VDI-Verlag Düsseldorf, 2000. Fortschrittsberichte des VDI.

Villmann, Th., Hermann, W., & Geyer, M. (2000). Variants of self-organizing maps
for data mining and data visualization in medicine.Neural Network World, 10,
751–762.
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