192 research outputs found

    The Block Spin Renormalization Group Approach and Two-Dimensional Quantum Gravity

    Get PDF
    A block spin renormalization group approach is proposed for the dynamical triangulation formulation of two-dimensional quantum gravity. The idea is to update link flips on the block lattice in response to link flips on the original lattice. Just as the connectivity of the original lattice is meant to be a lattice representation of the metric, the block links are determined in such a way that the connectivity of the block lattice represents a block metric. As an illustration, this approach is applied to the Ising model coupled to two-dimensional quantum gravity. The correct critical coupling is reproduced, but the critical exponent is obscured by unusually large finite size effects.Comment: 10 page

    Fivebranes from gauge theory

    Full text link
    We study theories with sixteen supercharges and a discrete energy spectrum. One class of theories has symmetry group SU(2∣4)SU(2|4). They arise as truncations of N=4{\cal N}=4 super Yang Mills. They include the plane wave matrix model, 2+1 super Yang Mills on R×S2R \times S^2 and N=4{\cal N}=4 super Yang Mills on R×S3/ZkR \times S^3/Z_k. We explain how to obtain their gravity duals in a unified way. We explore the regions of the geometry that are relevant for the study of some 1/2 BPS and near BPS states. This leads to a class of two dimensional (4,4) supersymmetric sigma models with non-zero HH flux, including a massive deformed WZW model. We show how to match some features of the string spectrum with the Yang Mills theory. The other class of theories are also connected to N=4{\cal N}=4 super Yang Mills and arise by making some of the transverse scalars compact. Their vacua are characterized by a 2d Yang Mills theory or 3d Chern Simons theory. These theories realize peculiar superpoincare symmetry algebras in 2+1 or 1+1 dimensions with "non-central" charges. We finally discuss gravity duals of N=4{\cal N}=4 super Yang Mills on AdS3×S1AdS_3 \times S^1.Comment: 50+24 pages, 9 figures, latex. v2: typos corrected, references adde

    Robustness of equilibrium in the Kyle model of informed speculation

    Get PDF
    We analyze a static Kyle (1983) model in which a risk-neutral informed trader can use arbitrary (linear or non-linear) deterministic strategies, and a nite number of market makers can use arbitrary pricing rules. We establish a strong sense in which the linear Kyle equilibrium is robust: the rst variation in any agent's expected payo with respect to a small variation in his conjecture about the strategies of others vanishes at equilibrium. Thus, small errors in a market maker's beliefs about the informed speculator's trading strategy do not reduce his expected payo s. Therefore, the original equilibrium strategies remain optimal and still constitute an equilibrium (neglecting the higher-order terms.) We also establish that if a non-linear equilibrium exists, then it is not robust

    A Matrix Model for AdS2

    Full text link
    A matrix quantum mechanics with potential V=q2r2V={q^2 \over r^2} and an SL(2,R) conformal symmetry is conjectured to be dual to two-dimensional type 0A string theory on AdS2_2 with qq units of RR flux.Comment: 12 page

    The 1/N expansion of colored tensor models

    Full text link
    In this paper we perform the 1/N expansion of the colored three dimensional Boulatov tensor model. As in matrix models, we obtain a systematic topological expansion, with more and more complicated topologies suppressed by higher and higher powers of N. We compute the first orders of the expansion and prove that only graphs corresponding to three spheres S^3 contribute to the leading order in the large N limit.Comment: typos corrected, references update

    Unexpected Spin-Off from Quantum Gravity

    Full text link
    We propose a novel way of investigating the universal properties of spin systems by coupling them to an ensemble of causal dynamically triangulated lattices, instead of studying them on a fixed regular or random lattice. Somewhat surprisingly, graph-counting methods to extract high- or low-temperature series expansions can be adapted to this case. For the two-dimensional Ising model, we present evidence that this ameliorates the singularity structure of thermodynamic functions in the complex plane, and improves the convergence of the power series.Comment: 10 pages, 4 figures; final, slightly amended version, to appear in Physica

    Bubble divergences: sorting out topology from cell structure

    Full text link
    We conclude our analysis of bubble divergences in the flat spinfoam model. In [arXiv:1008.1476] we showed that the divergence degree of an arbitrary two-complex Gamma can be evaluated exactly by means of twisted cohomology. Here, we specialize this result to the case where Gamma is the two-skeleton of the cell decomposition of a pseudomanifold, and sharpen it with a careful analysis of the cellular and topological structures involved. Moreover, we explain in detail how this approach reproduces all the previous powercounting results for the Boulatov-Ooguri (colored) tensor models, and sheds light on algebraic-topological aspects of Gurau's 1/N expansion.Comment: 19 page

    The basis of the physical Hilbert space of lattice gauge theories

    Get PDF
    Non-linear Fourier analysis on compact groups is used to construct an orthonormal basis of the physical (gauge invariant) Hilbert space of Hamiltonian lattice gauge theories. In particular, the matrix elements of the Hamiltonian operator involved are explicitly computed. Finally, some applications and possible developments of the formalism are discussed.Comment: 14 pages, LaTeX (Using amsmath

    2D Conformal Field Theories and Holography

    Get PDF
    It is known that the chiral part of any 2d conformal field theory defines a 3d topological quantum field theory: quantum states of this TQFT are the CFT conformal blocks. The main aim of this paper is to show that a similar CFT/TQFT relation exists also for the full CFT. The 3d topological theory that arises is a certain ``square'' of the chiral TQFT. Such topological theories were studied by Turaev and Viro; they are related to 3d gravity. We establish an operator/state correspondence in which operators in the chiral TQFT correspond to states in the Turaev-Viro theory. We use this correspondence to interpret CFT correlation functions as particular quantum states of the Turaev-Viro theory. We compute the components of these states in the basis in the Turaev-Viro Hilbert space given by colored 3-valent graphs. The formula we obtain is a generalization of the Verlinde formula. The later is obtained from our expression for a zero colored graph. Our results give an interesting ``holographic'' perspective on conformal field theories in 2 dimensions.Comment: 29+1 pages, many figure
    • …
    corecore