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It is known that the chiral part of any 2D conformal field theory defines a 3D
topological quantum field theory: quantum states of this TQFT are the CFT con-
formal blocks. The main aim of this paper is to show that a similar CFT/TQFT
relation exists also for the full CFT. The 3D topological theory that arises is a
certain “square” of the chiral TQFT. Such topological theories were studied by
Turaev and Viro; they are related to 3D gravity. We establish an operator/state
correspondence in which operators in the chiral TQFT correspond to states in the
Turaev—Viro theory. We use this correspondence to interpret CFT correlation func-
tions as particular quantum states of the Turaev—Viro theory. We compute the
components of these states in the basis in the Turaev-Viro Hilbert space given by
colored 3-valent graphs. The formula we obtain is a generalization of the Verlinde
formula. The later is obtained from our expression for a zero colored graph. Our
results give an interesting “holographic” perspective on conformal field theories in
two dimensions. ©2004 American Institute of Physics.
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I. INTRODUCTION

To put results of this paper in a somewhat general context we recall that any conformal field
theory(CFT) defines a topological quantum field thedyQFT), see Refs. 1-4. The TQFT arises
by extracting a modular tensor category from the CFT chiral vertex operator algebra. Then, as
explained in Ref. 5, any modular category gives rise to a 3D TQFT. The TQFT ceakally)
described by saying that its Hilbert space is the spaddabmorphig conformal blocks of the
CFT. The canonical example of such CFT/TQFT correspondence is the well-known relation be-
tween Wess—Zumino—WitteWWZW) and Chern—Simon¢CS) theories. Let us emphasize that
this is always a relation between the holomorphic sector of the @FTts chiral part and a
TQFT. As such it is not an example of a holographic correspondence, in which correlation func-
tions (comprising both the holomorphic and antiholomorphic se¢tofSCFT on the boundary
would be reproduced by some theory in bulk.

It is then natural to ask whether there is some 3D theory that correspondsftdl tG&T. A
proposal along these lines was put forward some time ago by Vefimtie, argued that a relation
must exist between the quantum Liouville thedfyll, not just the chiral pajtand 3D gravity.
Recently one of us presenfedome additional arguments in favor of this relation, hopefully
somewhat clarifying the picture. The main goal of the present paper is to demonstrate that such a
relation between the full CFT and a certain 3D theory exists for a large class of CFT’'s. Namely,
we show that given a CFT there is a certain 3D field theory, which is a TQFT, and which is a
rather natural spin-off of the corresponding “chiral” TQFT. The TQFT in question is not new, it is
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the one defined by Turaev-Vifoand described in great detail in Ref. 5. This paper is thus aimed
at a clarification of the relation between the Turaev—\if&/) 3D TQFT's and CFT’s in two
dimensions.

The point that given a CFT there exists a relation between the full CFT and some 3D TQFT
is to some extent contained in recent works on boundary conformal field theory, see Refs. 2, 3, 4,
9, and references therein, and also a more recent papeiis emphasized, e.g., in Ref. 4, the full
CFT partition function on some Riemann surfa¥gpossibly with a boundajyis equal to the

chiral CFT partition function on the doub. There is then a certain “connecting” 3D manifold
M whose boundaryM is the doubleX. Using the chiral CFT/TQFT relation one obtains a 3D

TQFT in M that reproduces the chiral partition function ¥nand thus the full partition function
on X. This formalism turns out to be very useful for analyzing the case whéas a boundary.
Our analysis was motivated by the above picture, but the logic is somewhat different. Instead

of working with the chiral TQFT in the connecting 3-manifold we work directly with a
3-manifoldM whose boundary iX, and the Turaev—Viro TQFT oW. The two approaches are
clearly related as the TV theory is a “square” of the chiral TQFT. However, bringing the Turaev—
Viro TQFT into the game suggests some new interpretations and provides new relations. Thus,
most notably, we establish an operator/state correspondence in which the chiral TQFT operators
correspond to states in the TV theory, and the trace of an operator product corresponds to the TV
inner product. We use this to interpret the CFT correlators as quantum states of TV theory. Then,
using the fact that a basis in the Hilbert space of TV theoryXois given by colored trivalent

graph states, we will characterize the CFT correlation functions by finding their components in
this basis. Thus, the relation that we demonstrate is about a 3D TQFT on a 3-maifatd a

CFT on the boundarX of M. It is therefore an example of a holographic correspondence, while
this is not obviously so for the correspondence based on a chiral TQFT in the connecting manifold
M.

The holography discussed may be viewed by some as trivial, because the three-dimensional
theory is topological. What makes it interesting is that it provides a very large class of examples.
Indeed, there is a relation of this type for any CFT. Importantly, this holography is not limited to
any AdS type background, although a very interesting subclass of exapteonsidered in this
paper, but see Ref)Ts exactly of this type.

As the relation chiral CFT/TQFT is best understood for the case of a rational CFT, we shall
restrict our analysis to this case. Our constructions can also be expected to generalize to nonra-
tional and even noncompact CFT’s with a continuous spectrum, but such a generalization is
non-trivial, and is not attempted in this paper. Even with noncompact CFT's excluded, the class of
CFT's that is covered by our considerations, namely, rational CFT, is still very large. To describe
the arising structure in its full generality we would need to introduce the apparatus of category
theory, as it was done, e.g., in Ref. 5. In order to make the exposition as accessible as possible we
shall not maintain the full generality. We demonstrate the CFT/TQFT holographic relation using a
compact group WZW CFTand CS theory as the corresponding chiral TQE3F an example.

We shall often refer to the TV TQFT as “gravity.” For the case of chiral TQFT being the
Chern—Simons theory for a gro@p= SU(2) this “gravity” theory is just the usual 3D Euclidean
gravity with positive cosmological constant. However, the theory can be associated to any CFT.
The reader should keep in mind its rather general character.

In order to describe the holographic correspondence in detail we will need to réarelv
clarify) the relation between CS theory and graity between the Reshetikhin—Turaev—Witten
and Turaev-Viro invarianigor a 3-manifold with boundary. We found that the expositions of this
relation available in the literatusee Refs. 5, Dlare rather brief and sketchy. This paper provides
a more detailed account and obtains new results. In particular, the operator/state correspondence
established in this paper is new.

Finally, we would like to emphasize that the approach presented in this paper is not equivalent
to that of Refs. 2, 3, 4, 9, even though it was motivated by these papers. Thus, most of our
discussion only concerns the diagonal-type partition functions, while Ref. 4 is applicable to the
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more general case. It would be of interest to study the relation to Refs. 2, 3, 4, 9 in more detail,
and also extend the approach presented here to modular invaraint partition functions of other
types. We shall not attempt this in the present paper.

The paper is organized as follows: In Sec. Il we review the quantization of Chern—Simons
theory. Section Il is devoted to the Turaev-Viro theory. We then review the definition of
3-manifold invariants in Sec. IV, and some facts on the Verlinde formula in Sec. V. The new
material starts in Sec. VI, where we discuss the CS/TV operator/state correspondence and the
arising relation between the CS and TV Hilbert spaces. In Sec. VIl we interpret the CFT partition
function as a TV quantum state, and compute components of this state in a natural basis in the TV
Hilbert space given by graphs. We conclude with a discussion.

. CHERN-SIMONS THEORY

This section is a rather standard review of CS theory. We discuss the CS phase space, the
Hilbert space that arises as its quantization, review the Verlinde formula, and a particular basis in
the CS Hilbert space that arises from a pant decomposition. The reader may consult, e.g., Refs. 12
and 5 for more detalils.

A. Action

The Chern—Simong&CS) theory is a three-dimensional TQFT of Witten-type. The CS theory
for a groupG is defined by the following action functional:

k 2 k
ScdAl= - fMTr(ADdA+ §ADADA) — 0 LMdde?Tr(AZA;). 2.1

HereM is a three-dimensional manifold aidis a connection on the princip&-bundle overM.

For the case of a compa@ that we consider in this paper the action is gauge invafiaodulo

2mw) whenk is an integer. The second term {8.1) is necessary to make the action principle
well-defined on a manifold with boundary. To write it one needs to choose a complex structure on
dM. As oM is a 2D Riemann surface, complex structures on it are same as conformal structures.
Thus, one has to make a choice of the conformal structure. Then the tef2alinis the one
relevant for fixingAz-on the boundary. Another possible choice of boundary condition is #,fix

The corresponding action is:

k 2 k
S&[A]z—f Tr(ADdA+ —ADADA +—f dzOdZ Tr(AAS). (2.2)
4 M 4 IM

3

B. Partition function

The partition function arisedormally) by considering the path integral f(2.1). For a closed
M it can be given a precise meaning through the surgery representatioi aihd the
Reshetikhin—Turaev—-Witte(RTW) invariant of links. Before we review this construction, let us
discuss the formal path integral for the case widnhas a boundary. For example, let the
manifold M be a handlebodyd. Its boundaryX=gdH is a (connectefl Riemann surface. Recall
that TQFT assigns a Hilbert space to each connected componéht,odind a map between these
Hilbert spaces tdvi. The map can be heuristically thought of as given by the path integral. For a
manifold with a single boundary component, which is the case for a handldbpd@QFT onH
gives a mapF:Hﬁsﬂ‘C mapping the CS Hilbert space ¥finto C. This map can be obtained from
the following Hartle—HawkingHH) type state:

F(A)= J DA €ScdAl, 2.3
Az=A
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The path integral is taken over connectionsHnwith the restriction ofA on X fixed. More
precisely, with the choice of boundary term in the action afif), one fixes only the antiholo-
morphic partA= A; of the connection orX, as defined by an auxiliary complex structure. The
result of the path integrdR.3) is the partition function of CS theory dd. It can be thought of as
a particular qguantum stat&(A) in the CS Hilbert spacé—lgs. The inner product irﬂ-(ﬁS is
(formally) defined as

(V4| W,)= JADAD_A e Mm@z TR W (A)W,H(A). (2.4

Here d’z=dz(0dZ/2i is the real measure on the boundary. The above mentioned f&ig>
—C is given by

FW)=(Aw)= LDAD_A e~ (W andZ AL F A W (A). 2.5

The stateF(A) e H%S depends only on the topological nature of the 3-manifold and a framing of
M.

C. Phase space

To understand the structure of the CS Hilbert space it is natural to use the Hamiltonian
description. Namely, near the boundary the manifold has the topogl. Then the phase space
PCS of CS theory based on a grow is the moduli space of flaB-connections orX modulo
gauge transformations:

P~ AlG. (2.6)

It is finite dimensional.

Let X be a(connectedl Riemann surface of typeg(n) with g=0, n>0, 2g+n—2>0.
Denote the fundamental group ¥fby 7(X). The moduli spaced can then be parametrized by
homomorphismsp: w(X)— G. The phase space is, therefore, isomorphic to

PSS~ Hom(7(X),G)/G, 2.7)

where one mods out by the action of the group at the base point. The fundamental group is
generated byn; ,i=1,...n anda; ,b; ,i=1,... g satisfying the following relation:

my---mgp[ag,by] - -[ag,bg]=1. (2.8
Here[a,b]=aba b~ !. The dimension of the phase space can now be seen to be
dimP$®=(2g+n—2)dimG. (2.9

The fact that(2.7) is naturally a Poisson manifold was emphasized in Ref. 13. The Poisson
structure described in Ref. 13 is the same as the one that comes from CS theory. For the case of
a compactX the spacd2.7) is actually a symplectic manifold. For the case when punctures are
present the symplectic leaves are obtained by restricting the holono#yaodund punctures to

lie in some conjugacy classes in the group. An appropriate power of the symplectic structure can
be used as a volume form on the symplectic leaves. Their volume turns out to be finite. One thus
expects to get finite dimensional Hilbert spaces upon quantization.

D. Hilbert space

The Hilbert spacé{ §S was understodd*to be the same as the space of conformal blocks of
the chiral Wess—Zumino—WitteA\NVZW) theory on a genug-surface withn vertex operators
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inserted. Let us fix irreducible representatid®s{p,,...,p,} Of G labeling the punctures. The
dimension of each of{$° can be computed using the Verlinde form{ita?

; cs Soie’ " Sp 2-2g
dImHX 22 m(sop) . (2.10

The sum is taken over irreducible representatiorts,,, is the modular S-matrix, se¢é.3) below
for the case of S(2), andSy,= dim,, where is given by(4.2).

E. Pant decomposition

The states fron‘i—[§S can be understood as the HH type states given by the path integral over
a handlebodyH with Wilson lines in representatiori® intersecting the boundary transversally
atn points. A convenient basis 'rH)‘ES can be obtained by choosing a pant decompositioX. g%
pair of pants is a sphere with 3 holésme of them can be punctuyeA Riemann surfac& of
type (g,n) can be represented byg2 n— 2 pants glued together. For example, the surface of type
(0,4) with 4 punctures can be obtained by gluing together 2 spheres each with 2 punctures and one
hole. Note that a pant decomposition is not unique. Different pant decompositions are related by
simple “moves.” A pant decomposition can be conveniently encoded in a tri-valent grapth
2g+n—2 vertices and §+2n—3 edges. Each vertex @& corresponds to a pair of pants, and
each internal edge corresponds to two holes glued together. Open-ended edgasdadit punc-
tures. We shall call such edges “loose.” There are exatthf them. The grapiA can be thought
of as a 1-skeleton of the Riemann surfa€eor as a Feynman diagram that corresponds to the
string world-sheeX. The handlebodyH can be obtained fromA as its regular neighborhood
U(A), so thatA is insideH and the loose edges dfend at the punctures. Let us label the loose
edges by representatiois and internal edges by some otheon-nul) irreducible representa-
tions. It is convenient to formalize the labeling &fin a notion ofcoloring ¢. A coloring ¢ is the
map

PEx—I, @(€)=peel (2.11

from the setE, of edges ofA to the setZ of (non-nul) irreducible representations of the quantum
groupG. The loose edges are colored by representations Roithe CS path integral oH with
the spin networkA? inserted is a state ift 5. See below for a definition of spin networks.
Changing the labels on the internal edges one gets states that span the?vﬁ?olé)ifferent
choices of pant decomposition bff (and thus ofA) lead to different bases ik gs_

F. Inner product

The inner product2.4) of two states of the type described can be obtained by the following
operation. Let one state be given by the path integral bverith A? inserted and the other by

with A®" inserted, where both the graph and/or the coloring may be different in the two states. Let
us invert orientation of the first copy ¢f and glue—H to H across the boundarjusing the

identity homomorphisinto obtain some 3D spadé without boundary. We will refer té1 as the
doubleof H. For H being a handlebody witly handles the doublél has the topology of a

connected sum:

H~#,_,S*x S (2.12

The loose ends oA are connected at the punctures to the loose ends’ db obtain a colored
closed grapl\?UA?" insideH. The inner product2.4) is given by the CS path integral ovisr
with the spin networkA?UA ¢’ inserted. This path integral is given by the RTW evaluation of
A?UA®" in H, see below for a definition of the RTW evaluation.
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lll. GRAVITY

The material reviewed in this section is less familiar, although is contained in the literature.
We give the action for Turaev-Viro theory, discuss the phase space, then introduce certain impor-
tant graph coordinatization of it, define spin networks, and describe the TV Hilbert space. A useful
reference for this section is the book of Tura®ef. 5 and Ref. 1)1

A. Action

What we refer to as “gravity” arises as a certain “square” of CS theory. We will also refer to
this gravity theory as Turaev—Vir@l'V) theory, to have uniform notation€S-TV).

To see how the TV theorygravity) arises from CS theory, let us introduce two connection
fields A andB. Consider the corresponding CS actidhs{ A],Scd B]. Introduce the following
parametrization of the fields:

o

A=w+ K

ar
€ B:W_(F) e (3.1
Herew is a G-connection, anck is a one-form valued in the Lie algebra Gf. The TV theory

action is essentially given by the differenSgd A]— S:d B], plus a boundary term such that the
full action is

STV[w,e]=fMTr elIf(w)+ %eﬂeme). (3.2

The boundary condition for this action is that the restrictionf w on X=¢M is kept fixed. Here

A is the “cosmological constant” related to as k=2#/\/A. For G=SU(2) the TV theory is
nothing else but the Euclidean gravity with positive cosmological constantVe emphasize,
however, that the theory is defined for other groups as well. Moreover, it also exists as a square of
a chiral TQFT for any TQFT, that is even in cases when the chiral TQFT is not a CS theory.

B. Path integral

Similarly to CS theory, one can consider HH type states given by the path integral on a
manifold with a single boundary component. Thus, for a manifold being a handléthauy get
the TV partition function:

(W)= J DwDe e'Stvwel (3.3

wlx=w

The integral is taken over both,e fields in the bulk with the restrictiow of the connection fixed
on the boundary. The TV partition functiai{w) is thus a functional of the boundary connection.
It can also be interpreted as a particular state in the TV Hilbert sh‘airé’e
States fromH)T(V are functionals of the boundary connection. The inner product on this space
can be formally defined by the formula

1

(V4| Py = VoG

fADV_V V(W) Wo(w) (3.9

similar to (2.4). Note, however, that the measure(814) is different from that in(2.4). We shall
see this below when we describe how to compute TV inner products in practice.

C. Relation between TV and CS states

Formally, the following relation between TV and CS states exists. As one can easily check, the
difference of two CS actions in the parametrizati@nl) is given by
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1 k )2
SES[A]—SéS[B]=STV[W,e]+—f Tr(eDw)——f dzOdz Tr| wws+ | —| ees].
2 Jom 27 Jom k
(3.9
Therefore,
el Scd Al —iScdBl = (K/m)[ 502 THAB,) — giStyIw.el + (2/K)f 002 Tr(e,e;) (3.6)

Hered?z=dz0dZ/2i is the real measure oM. Note that the last term in the exponential on the
left hand side is the same as in the CS inner prod2ié). From this expression one can read off
a prescription for obtaining the TV staféw). Indeed, let us integrate the left-hand side over bulk
A,B, keepingA3,B, fixed on the boundary. Let us denote the resuldibiA;,B,). We have

®(A7,B,) =W (AT (B,) e KWm e 2TiAB), (3.7)

To get 7(w) one must takeb(Az,B,) in the parametrizatior{3.1), multiply the result by an
exponential factor and integrate over the restricéonf e on the boundary:

7—(‘/_V):f De e—(zw/k)f,,MdzzTr(eZ_ez—) | wyt

ar ar
F) QZ,WZ—(F) @z)- (3.9

The functional®(A;,B,) is a vector in the Hilbert spack “5 H ©S. We should view(3.8) as a
transform between this Hilbert space aHd". This transform will play an important role in what
follows. Below we shall see how the result of the transf@81®) can be found in practice.

D. Phase space

The TV phase space is basically two copiesRSfS, but with an unusual polarization. The
polarization orP ™ is given bye, w, which are canonically conjugate variables. Note that there is
no need to choose a complex structure in order to define this polarization.

It turns out to be very convenient to think @™ as some deformation of the cotangent
bundleT* (.A/G) over the moduli spacgl/G of flat connections oiX. Note, however, that the TV
connectionw on the boundary is not flat, so the configuration space for TV theory is not really the
moduli space of flat connections. One does déf as the configurational space in an important
limit k—oc, in which thee™® term drops from the actio(8.2). Thus, it is only in this limit that the
TV phase space is the cotangent buriti€.4/G). For a finitek the TV phase space is compéas
consisting of two copies dP©S), while T* (A/G) is not. We will see, however, that it is essentially
correct to think ofP™ as a deformation of* (A/G) even in the finit&k case. The compactness
of PV will manifest itself in the fact that after the quantization the range of eigenvaluessof
bounded from above.

These remarks being made we write

PV~TE(AIG), (3.9

whereT} is certain compact version of the cotangent bundle. The phase space becomes the usual
cotangent bundle in thk— oo limit. We will not need any further details on spacgs. As we
shall see the quantization &f'V is rather straightforward once the quantization of the cotangent
bundle is understood.

We note that the dimension

dmP™V=2(2g+n—-2)dimG (3.10

is twice the dimension of the phase space of the corresponding CS theory, as required. A conve-
nient parametrization of the cotangent bundle phase space can be obtained by using graphs.
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(a) (b)

FIG. 1. A fat graphl” for the (a) sphere with 4 puncture$b) torus with one puncture.

E. Graphs

The graphs one considers are similar to those that arise in the Penner coordinafipétioa
moduli space of punctured Riemann surfaces. Namely, gkjemtroduce a trivalent closed fat
graphI’ with the number~ of faces equal to the number of punctures. Such a graph can be
obtained by triangulating the surfageusing punctures as vertices, and then constructing a dual
graph. What arises is exactly a graph See Fig. 1 for examples df. Note that different
triangulations lead to different graphs, Eds by no means unique.

Because the graph is trivalenVV3-2E, whereV is the number of vertices anH is the
number of edges. We also have the Euler characteristics relation:

F-E+V=2-2g. (3.1)

We thus get that the numbé&r of edges ofl” is E=3(2g+n—2).
Note that the grapl’ does not coincide with the graphintroduced in the previous section.
There is, however, a simple relation between them that is worth noting. Let us, as in the previous

section, form the doublel=HU —H. It is a closed 3-manifold obtained by gluing two copies of
the handlebodyH across the boundar¥. Let us take a graph in H, and another copy ai in
—H. These graphs touch the boundaty=X at the punctures. Gluing these two copiesioat
the punctures one obtains a closed graphA in H. It is a trivalent graph with 2(g+n—2)
vertices and 3(g@+n—2) edges. Now consider the regular neighborhblddd UA) of AUA in
HU —H. This is a handlebody, whose boundary is of genus

G=2g+n—-1. (3.12

The surfaced)U(AUA) can be obtained by taking two copies Xf removing some small disks
around the punctures, and identifying the resulting circular boundaries to get a closed surface
without punctures. We have the following:

Lemma: The surfacdU(AUA) is a Heegard surface for d—H. The complement of
U(AUA) in HU—H is a handlebody that is the regular neighborhoodIl) of the graphl’ on
X.

Proof: The complement o) (AUA) in HU —H can be seen to be the cylindéix [ 0,1] with
n holes cut in it. So, it is indeed a handlebody of gef®142). Its 1-skeleton that can be obtained
by choosing a pant decomposition is the trivalent griph

F. Graph connections

GivenTI" equipped with an arbitrary orientation of all the edges, one can introduce what can be
called graph connections. Denote the set of edgefs” by E. We use the same letter both for the
setE of edges and for its dimension. A graph connectfois an assignment of a group element
to every edge of the graph:

A:E—G, A(e)=g.cG. (3.13
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One can also introduce a notion of graph gauge transformations. These act at verfice& of
gauge transformation is parametrized \bygroup elements. Let us introduce:

H:V—-G, H(v)=h,eG. (3.149

HereV is the set of vertices df. For an edge e E denote bys(e) (source the vertex from which
e originates, and by(e) (targej the vertex where ends. The action of a gauge transformatitn
on a graph connectioA is now as follows:

AM(e)=hg Ge hg(e) - (3.15

The space of graph connections modulo graph gauge transformations can now be seen to be
isomorphic toG®E/G®V. Its dimension is given by2.9). We thus get a parametrization of the CS
phase spac®®S based on a graph:

PE~GEFIG®Y. (3.16
The TV phase space is the cotangent bundle
PV~TE(G®EIG®Y). (3.17

As we shall see, it is rather straightforward to quantize the noncomipact version of PV,
that is the cotangent bundle. The quantum states are given by spin networks.

G. Spin networks

To quantize the cotangent bundlé (.A/G) one introduces a Hilbert space of functionals on
the moduli space of flat connections. A complete set of such functionals is given by spin networks.
These functions will thus fornan over-completebasis in the Hilbert space of TV theory. They
also serve as observables for CS quantum theory, see below.

Before we define these objects, let us introduce some convenient notations. Denote the set of
irreducible representations of the quantum grou by Z. Introduce a coloringy:E—Z, (€)
= p, Of the edges of with irreducible representations . A spin networkl'¥ is a functional on
the space of graph connections:

r:G*E~C. (3.18

Given a connectiod the value ofl’ ¥(A) is computed as follows. For every edgéake the group
elementg, given by the graph connection in the irreducible representatjonOne can think of

this as a matrix with two indices: one for the sou(@) and the other for the targete).
Multiply the matrices for all the edges &f. Then contract the indices at every tri-valent vertex
using an intertwining operator. The normalization of intertwiners that we use is specified in the
Appendix. The definition we gave is applicableGe= SU(2). Inthis case the trivalent intertwiner

is unique up to normalization. For other gauge groups one in addition has to label the vertices of
I' with intertwiners, so that a spin network explicitly depends on this labeling. The functional
(3.18 so constructed is invariant under the graph gauge transformatbohd and is thus a
functional on the moduli space of flat connections modulo gauge transformations. As such it is an
element of the Hilbert space of TV theory. It is also an observable on the CS phasg3jéce

H. Quantization

We can define the Hilbert spadkd ™ of Turaev—Viro theory to be the space of gauge-
invariant functionals¥ (w) on the configurational spac@®/G®V. This gives a quantization of
the k—oo limit, but a modification for the case of finite is straightforward. As we discussed
above, a complete set of functionals 6f5/G®V is given by spin networks. We denote the state
corresponding to a spin netwolk” by [T'%). They form a basis of states i ™:
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H ™V=Spad|T'¥)}. (3.19

One can construct certain momenta operators, analogs éfdw in the continuum theory. Spin
networks are eigenfunctions of these momenta operators. To specialize to the case bfdimate
has to replace all spin networks by quantum ones. That is, the coloring of ed@emo$t use
irreducible representations of the quantum group, which there is only a finite set.

The spin network statg§ *) form an overcomplete basis # ', in that the TV inner product
between differently colored states is nonzero. However, these states do give a partition of unity in
that

% (e]l dimpe> [T (3.20

is the identity operator irf{ ™. This will become clear from our definition of the TV inner
product, and the definition of the TV invariant in the next section.

It seems from the way we have constructed the Hilbert spatéthat it depends on the graph
I'. This is not so. Choosinfj differently one gets a different basis in the same Hilbert space. To
describe an effect of a change Ibfit is enough to give a rule for determining the inner products
between states from two different bases.

I. Inner product

The inner product ot T is given(formally) by the integral3.4) over boundary connections.
To specify the measure in this integral, one has to consider the path integral for the theory.
Namely, consider a 3-manifold X[ —1,1] over X, which is a 3-manifold with two boundary
components, each of which is a copyXf The TV path integral oveX X[ —1,1] gives a kernel
that should be sandwiched between the two states whose inner product is to be computed. Thus,
the measure i63.4) is defined by the TV path integral. The measure, in particular, depends on the
level k.

In practice the inner product of two statE¥ "', where both the graphs and the coloring
may be different, is computed as the TV invariant for the manibdkd[ —1,1] with T'¥ on X

x{—1} andI'*" on Xx{1}. Further details on the TV inner product are given in the next section.

IV. 3-MANIFOLD INVARIANTS

In this section we review the definition of RTW and TV invariants. The main references for
this section are Refs. 19 and 20.

A. Reshetikhin—Turaev—Witten invariant

The RTW invariant of a closed 3-manifolavith, possibly, Wilson loops or spin networks
inserted gives a precise meaning to the CS path integral for this manifold. The definition we give
is for M without insertions, and is different from, but equivalent to the original definition in Ref.
21. We follow Robertg?

Any closed oriented 3-manifolM can be obtained fror8® by a surgery on a link irs®. Two
framed links represent the same manifditl if and only if they are related by isotopy or a
sequence of Kirby moves, that is either handle-slides or blow-ups, see Refs. 19 or 22 for more
detail. LetL be a link giving the surgery representation\df Define{)L € C to be the evaluation
of L in S® with a certain elemenf2 inserted along all the componentslaf paying attention to the
framing. The elemerf) is defined as follows, see Ref. 19. It is an elemert§, whereT is the
torus, and is given by

Q=72 dm,R,. (4.1
P
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The sum is taken over all wredumble representatiprs?, the quantity dirp is the quantum
dimension, andR, is the state mH obtained by inserting the O-framed unknot in ths
representation along the cycle that is noncontractible inside the solid torus Hagsgs bound-
ary. The quantityy is given by

7 2=2 dim?. (4.2)
P

For example, folG=SU(2) =2k sin(m/k)=S,y, where

2
Sj= \[Esin

With the normalization chosen, t18¥ value of a 0-framed unknot witf attached isy~ !, while
+1 framed unknots witl) attached give certain unit modulus complex numbers. For G
=SU(2) r=exp(imld—2mi(3+k?)/4K).

Let us now continue with the definition of the RTW invariant. Defined{y.) the signature
of the 4-manifold obtained by attaching 2-handles to the 4®4lhlongL C S°=gB*. Define

(|+1)(]+1)7r), =3,

K 4.3

[(M)=nr o QL. (4.9

This is the RTW invariant of the manifold/ presented by.. We use the normalization of
Roberts® in which the RTW invariant satisfidgS%) = »,1(S?x SY) =1, as well as the connected
sum rulel (M#My)=7"1(M)(M,).

B. Turaev—-Viro invariant

The original Turaev-Viro invariant is defin®ébr triangulated manifolds. A more convenient
presentatioff uses standard 2-polyhedra. Another definition is that of Rob&htases a handle
decomposition oM. We first give the original definition of Turaev and Viro.

Let T be a triangulation of 3D manifoll. We are mostly interested in case tihthas a
boundary. Denote by/; the number of vertices of, and by{e},{f},{t} collections of edges,
faces and tetrahedra df. Choose a coloring: of all the edges, so that(e)=p, is the color
assigned to an edge The Turaev-Viro invariant is defined as

VM, Tl o) =227 TT dim, IT (6j).. (4.5
n e¢dM t

Here (§); is the §-symbol constructed out of 6 colors labeling the edges of a tetrahedeomd
the product is taken over all tetrahedraof T. The product of dimensions of representations
labelling the edges is taken over all edges that do not lie on the boundary. The sum is taken over
all colorings i keeping the coloring on the boundary fixed. The invariant depends on the restric-
tion T|,y of the triangulation to the boundagM, and on the colorings|,, of this restriction.
The invariant is independent of an extensionTofy, inside M.

Note that the TV invariant is constructed in such a way that for a closed 3-marifold
=M,;UM, obtained by gluing two manifolds,,M, with a boundary across the boundary the
invariant TV(M) is easily obtained once TW(,,T; 2|,;M12,,u1 o oM 2) are known. One has to

triangulate the boundary d¥l; , in the same wayT 1|, = Talom,, multiply the invariants for

Mj,, multiply the result by the dimensions of the representations labelling the edges of
T1,2|‘,M12=T|3M, and sum over these representations. The result isvIV/(

TV(M)= ; (ﬂm dimpe)TWMl.mM ) TV, Tl s el ) (4.6)
Mlom €
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This, together with the definition of the TV inner product as the TV invarianifar establishes
that (3.20 is indeed the identity operator iH T".

C. Roberts invariant

We shall now introduce the more general invariant of Roberts. We consider the case without
boundary.

Consider a handle decompositi@n of M. The canonical example to have in mind is the
handle decomposition coming from a triangulatidrof M. A thickening of the corresponding
dual complexT* then gives a handle decomposition. The vertices of the dual corfipdeicenters
of tetrahedra of the triangulatipeorrespond to 0-handles, edgesTdf (faces ofT) correspond to
1-handles, faces of* (edges ofT) give 2-handles, and 3-cells df* (vertices of T) give
3-handles. The union of 0- and 1-handles is a handlebody. Choose a system of meridian disks for
it, one meridian disk for every 1-handle. Now specify the system of attaching curves for 2-handles.
If the handle decomposition came from a triangulation there are exactly 3 attaching curves along
each 1-handle. Frame all meridian and attaching curves using the orientation of the boundary of
the handlebody. Denote the corresponding link ®¢M,D). Insert the elemenf) on all the
components o€(M,D), paying attention to the framing, and evalu@gM,D) in S°. This gives
the Roberts invariant fol:

R(M)=7%%%0C(M,D). 4.7

Hered;,dg are the numbers of 3- and 0-handles correspondingly. Note that to evlG4td ,D)
in S% one needs to first specify an embedding. The result of the evaluation does not depend on the
embedding, see Ref. 19. Moreover, the invariant does not depends on a handle decomniposition
and is thus a true invariant ofl.

When the handle decompositi@ comes from a triangulatioft the Roberts invariant4.7)
coincides with the Turaev—Viro invariafd.5). An illustration of this fact is quite simple and uses
the 3-fusion(A2), see Ref. 19 for more detail.

Lemma (Roberts): The described above systéi ©) of meridian and attaching curves for
a handle decomposition D of M gives a surgery representation &N .

This immediately implies the theorem of Turaev and Walker:

TV (M)= g5 l(M#—M)=|I(M)|2. (4.9

Below we shall see an analog of this relation for a manifold with boundary. All the facts men-
tioned make it clear that the TV invariant is a natural spin-off of the(RBW) invariant.

D. TV inner product

Recall that the Turaev—Viro inner product between the graph stitéswas defined in the
previous section as the TV path integralX¥i 1. The TV path integral is rigorously defined by the
TV invariant(4.5). Here we describe how to compute the inner product in practice. The prescrip-
tion we give is from Ref. 20, Sec. 4.d. We combine it with the chain-mail idea of Rdberts
give this chain-mail prescription.

The product(l“¢’|l“*”') is obtained by a certain face model ot Namely, consider the
3-manifold XX I, wherel is the interval —1,1]. Putl'¥ on Xx{—1} andT'¥" on Xx{1}. Both
graphs can be projected on¥o= X< {0}, keeping track of under- and upper-crossings. By using
an isotopy ofX the crossings can be brought into a generic position of double transversal crossing
of edges. We thus get a graph ¥nwith both 3 and 4-valent vertices. The 3-valent vertices come
from those of '*,I'*', and 4-valent vertices come from edge intersections between the two
graphs. The inner product is given by evaluatiorSthof a certain chain-mail that can be con-
structed fronl" ¥, T'*". Namely, let us take one O-framed link for every face, and one O-framed link
around every edge of the graptfu I'Y onX. We get the structure of links at vertices as is shown
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in the following drawings:

4
\
N

”.
A »
- A

= = (4.9
Denote byC(I',I'') the obtained collection of links. The inner product is given by
(YT y= pVr Ve +Vi(TYUT Y. QC(TUT)). (4.10

HereVr,Vr, are the numbers of 3-valent vertices of graphE’ correspondingly, an;,,; is the
number of 4-valent vertices coming from intersections. The expression in brackets must be evalu-
ated inS%. Using the 3-fusiorfA2) one can easily convince oneself tltat10 coincides with the
prescription given in Ref. 20.

We would also like to note an important relation for the TV inner product that expresses it as
the RTW evaluation:

(TYT¥y=1(XXSL,TYT?"). (4.10)

The evaluation is to be carried out in the 3-maniflek St. This relation that does not seem to
have appeared in the literature. A justification for it comes from our operator/state correspondence,
see below. Let us also note that a direct proof of a particular subcageldf corresponding to
one of the graphs being zero colored is essentially given by our proof in the Appendix of the main
theorem of Sec. VII. We decided not to attempt a direct proofdat)) in its full generality.

Turaev theorem: Let us note the theorem 7.2.1 from Ref. 5. It states that the TV invariant for
H with the spin netword'¥ on X=gH equals the RTW evaluation &t in HU —H:

TV (H, T =1(HU—H,T). (4.12

This is an analog of4.8) for a manifold with a single boundary, and is somewhat analogous to our
relation (4.12) for the TV inner product.

V. VERLINDE FORMULA

The purpose of this somewhat technical section is to review some facts about the Verlinde
formula for the dimension of the CS Hilbert space. Considerations of this section will motivate a
more general formula given in Sec. VII for the CFT partition function projected onto a spin
network state. This section can be skipped on the first reading.

A. Dimension of the CS Hilbert space

Let us first obtain a formula for the dimension of the CS Hilbert space that explicitly sums
over all different possible states. This can be obtained by computing the CS inner product. Indeed,
as we have described in Sec. Il, a basigiifjs is given by spin networka ¢. With our choice of
the normalization of the 3-valent vertices the spin network staié$ are orthogonal but not
orthonormal. Below we will show that the dimension can be computed as

inte

¢

dimH $5=, (iye dimpe>(A¢|A‘f’>=§ (H dimpe)uHu—H,MuM), (5.1)

where the sum is taken over the colorings of the internal edges. The coloring of the edgismbf
end at punctures are fixed.
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To evaluateA ?U A ¢ we proceed as follows. Let us project the graph A to X. We note that
there is a canonical way to do this projection so that there are exactly two 3-valent vertices of
AUA on each pair of pants, and there are exactly two edged Wi\ going through each
boundary circle of a pair of pants. For example, the pat ofA projected on a pair of pants with
no punctures looks like

(5.2

One gets a similar structure when projecting on a pair of pants with punctures. In that case the two
holes in the center are replaced by punctures and loose edgearefconnected at the punctures
to the loose edges of the other copyAof

Let us now form a linkL, whose components are circles along which one glues the pant
boundaries together. There arg-8n—3 such circles, in one-to-one correspondence with internal
edges ofA. We push all components df, slightly out of X. Using the prescription of the
Appendix of Ref. 20 for computing the RTW evaluationMf with a graph inserted, one obtains

I[(HU—H,A?UA%)= 239" 3(A?UA%.QL,). (5.3

The evaluation on the right-hand side is to be takeB3nThis relation establishg$.1). Indeed,
there are exactly two edges &fJ A linked by every component af, . Using the 2-fusion we get
them connected at each pair of pants, times the fact@r*éfdimpe. The factors ofy are canceled
by the prefactor in5.3), and the factors of 1/di;;r(‘e1 are canceled by the product of dimensions in

(5.1). What remains is the sum over the colorings of the internal edges of the prodNgk dér
every pair of pants. This gives the dimension. This argument also shows that the sttegth
different coloring¢ are orthogonal.

B. Computing the dimension: Verlinde formula

The sum over colorings of the internal edge$518) can be computed. This gives the Verlinde
formula. Let us sketch a simple proof of it, for further reference.

We first observe that, using the 3-fusion, the Verlinde formula for the 3-punctured sphere can
be obtained as a chain-mail. Namely,

-1
n Nk = (5.4)

The Verlinde formula foN;; can be obtained by using the definitiohl) of () and the recou-
pling identity (A4) of the Appendix. The computation is as follows:

B SuSi | i SaSiSu
w;ﬂdimt =1 ; St

; (5.5

This is the Verlinde formul#2.10 for the case of a 3-punctured sphere. We have used the fact that
ndim; =Sy . The above proof of the Verlinde formula f&f;, is essentially that from Ref. 12.
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The general Verlinde formul&2.10 can be obtained using a pant decompositiorXadnd
taking a sum over labelings of the internal edged aff the product ofN;;c one for every pair of
pants. To get2.10 one just has to use the unitari;S; S; = §;; of the S-matrix.

C. Verlinde formula using graph  I': No punctures

Here we find a different representation of the Verlinde dimension. It was noticed in Ref. 23
that the Verlinde formula can be obtained using a certain gauge theory on a grapt-ane we
reinterpret this result using a chain-mail. We first derive a formula for a Riemann surface without
punctures. It is obtained by starting from a grdpborresponding to a surface with some number
n of punctures. Then a sum is carried over the labels at the punctures, so the end result depends
only on the genug, but not onn.

Consider a fat trivalent graph' that represent, ,. Let us form a chain-maiC(I") as
follows. Let us introduce a curve for every face of the fat grédptand a linking curve around
every 3(3+n—2) edges of’, so that the obtained structure of curves at each 3-valent vertex is
as in(4.9). Insert the elemenf) along each component &@(I'), and evaluate the result &.

What is evaluated is just the chain-mail oy no spin network corresponding Idis inserted. We
get the following result:

Theorem (Boulatov): The dimension of the Hilbert space of CS states grisXequal:

dimH§gS= 7'r QC(I). (5.6)

The expression on the right-hand side is independent of the draplat is used to evaluate. it

To prove this formula we use the 2-strand fusion. We get that all ohtt#ferent colorings
on the links of" become the same. Denote pythe corresponding representation. The result is
then obtained by a simple counting. Each §{2n—2) of links around edges introduces the
factor of "~ l/dimp. Every 2(4+n—2) vertices ofl" gives a factor of dim. Each ofn faces of
I" gives another factor ofy dim, . All this combines, together with the prefactor to give

dim# 5= 2> (7 dim,)*"%, (5.7
p
which is the Verlinde formuld2.10 for the case with no punctures.

VI. OPERATOR/STATE CORRESPONDENCE

This section is central to the paper. Here we discuss a one-to-one correspondence between
observables of CS theory and quantum states of TV theory. The fact that the algebra of observ-
ables in CS theory is given by graphs is due to Refs. 24 and 25, see also references below. The

notion of the connecting 3-manifolll is from Refs. 4 and 9. The operator/state correspondence
of this section, as well as the arising relation between the CS and TV Hilbert spaces, although to
some extent obvious, seems new.

A. CS observables and relation between the Hilbert spaces

We have seen that a convenient parametrization of the moduli sp'&dis given by the graph
I' connections. An expression for the CS Poisson structure in terms of graph connections was
found in Ref. 24. A quantization of the corresponding algebra of observables was developed in
Refs. 25-29(see also Ref. 30 for a revigwAs we have seen in Sec. Ill a complete set of

functionals onA/G is given by spin networks. Spin networks thus become oper#tbia the CS
Hilbert spaceH )C(S. We therefore get a version of an operator/state correspondence, in which TV
states correspond to observables of CS theory.

The fact that a CS/TV operator/state correspondence must hold follows from the relation
between the phase spaces of the two theories. Namely, as we have seen in Sec. lll, the TV phase
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space is given by two copies of the phase space of Chern—Simons tRgdry P @ P°S, where
the two copies have opposite Poisson structures. This means that in the quantum theory the
following relation must hold:

HY ~HEOHS~End(H $). (6.1)

Thus, the TV Hilbert space is isomorphic to the direct product of two copié¢ ©f The above
isomorphism is given formally by the formul&.8). We shall denote it by. It identifies the TV

spin network stated™*) with the CS spin network observablE4. This statement deserves some
explanation. The TV spin network states are wave functionals of the connectifinv) =7(A,
+B,,A;+ B3), whereas Chern—Simons states are functiodgl8,,B3). Thus, the isomorphism

(6.1) can be understood as a change of polarization. Being a change of polarization it intertwines
the operator algebras acting on the two side6dl). The polarization we have chosen for the TV

Viro model is the one for whicte~(A—B) acts trivially on the TV vacuum state. Using the
intertwinning property ol this means thalt(|0)+,) is commuting with all CS operatois”. It is

therefore proportional to the identity in Enﬂ&s). It follows from here that the operator that
corresponds to the TV stat€?) is the CS spin network operator:

1(|T %)) =T1(|0)ry) T 6.2

Thus, the described isomorphisi®.1) given by the change of polarization indeed identifies TV
graph states with the CS spin network operators.

Another important fact is as follows. Being a change of polarization, the isomorpéisin
preserves the inner product. Since the inner product on the right-hand diélid)ak just the CS
trace, we get an important relation:

TreTT) =(I'|T" )1y . 6.3

In other words, the trace of the product of operators in the CS Hilbert space is the same as the
inner product in the TV theory. This relation is central to the operator/state correspondence under
consideration. Let us now describe the isomorph{én) more explicitly.

B. Connecting manifold M

A very effective description of the above operator/state correspondence uses the “connecting
manifold” M. It is a 3-manifold whose boundary is the Schottky doublef the Riemann surface
X. Recall that the Schottky double of a Riemann surféde another Riemann surfade For the

case of a closeX, the surfaceX consists of two disconnected copies Xf with all moduli
replaced by their complex conjugates in the second copyXFaith a boundary(the case not
considered in this paper, but of relevance to the subject of boundary CFT, see, e.g., Retlse4, 9

doubleX is obtained by taking two copies &f and gluing them along the boundary. Consider a
3-manifold

M=Xx[0,1]/c, (6.4)

where is an antiholomorphic map such théto=X, ando reverses the “time” direction. See,
e.g., Ref. 4 for more detail on the constructionidf The manifoldM has a boundaryM =X,
and the original surfack is embedded intd4. For the case of a closet| relevant for this paper,
the manifoldM has the topologX x|, wherel is the intervall =[0,1], see Fig. 2.

Consider the RTW evaluation of a spin netwdik in M. It gives a particular state iH%sz

I(M, ) e HS®. (6.5
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M
X
FIG. 2. The manifoldV.
However, we have
HE~H oM S~ End H LY. (6.6

Thus (6.5 gives an operator ift{ {° for every graph statd™*) e H V.

C. Operator product

In the realization described the product of two operalfil‘sfw' is an element ofH;C(S
obtained by evaluating iV both'¥ andT'¥":

I(M,T%, ) e M5, (6.7)

D. Trace

The trace of an operatcfl‘"/’ is obtained by gluing the two boundaries Mf to form a closed
manifold of the topologyX x St:

Tres(TY) =1(XxSHTY). (6.9
One can similarly obtain the trace of an operator product:
Treg TV )= 1(XXSLTY,T¥"). (6.9
In view of (6.3), the above relation establishes11).

E. Identity operator
It is easy to see that the operator/state correspondence defin@édbpis such that the zero
colored grapH™® corresponds to the identity operator in the CS Hilbert space:

ro=i. (6.10

Indeed, insertion of © into M is the same aM with no insertion, whose RTW evaluation gives
the identity operator it ©S.
F. Matrix elements

We recall that a basis it §S is obtained by choosing a pant decompositiorXofor, equiva-

lently, choosing a trivalent grap, with a coloring ¢. The matrix eIement$A¢|f‘/’|A‘f’/> are
obtained by the following procedure. Take a handlebbidwith a graphA® in it, its loose ends
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ending at the punctures. The boundarybfs X, so that we can gluel from the left toM. One
similarly takes—H with A" in it, and glues it toM from the right. One connects the punctures
on the boundary oH to those on the boundary 6fH by strands insidé. What one gets is a

closed manifold of the topologyl U —H, with closed graph$¢UA¢' andI'? sitting inside it.
The matrix elements are obtained as the evaluation:

(AYTYA? Y =1(HU—H,A?UA®" T¥). (6.11)

VII. CFT PARTITION FUNCTION AS A STATE

Here we interpret the CFT partition functigonorrelatoj as a particular state in the Hilbert
space of TV theory. We also compute components of this state in the basis of states given by spin
networks.

A. CFT partition function

The partition function of any CFT holomorphically factorizes. To understand this holomorphic
factorization, and the relation to the chiral TQFT, it is most instructive to consider the partition
function as a function of an external connection. Namely, let CFT be the WZW model coupled to
an external connectiofgauged mode] and consider its partition functiahy” [m,m,z,z,A,,A;]
on X. Note that no integration is carried ov&ryet. Thus, the above quantity is not what is usually
called the gauged WZW partition function. The later is obtained by integrating Averhe
introduced partition function depends on the modbloth holomorphic and antiholomorphic
m,m, on positions of insertions of vertex operators coordinatized,by and on both the holo-
morphic and anti-holomorphic components of the connecfionn X. The partition function
holomorphically factorizes according to

z&Im,m,z,z,A, A= Wilm,z AW [M,ZA]. (7.3

HereW;[m,z,A,] are the(holomorphig conformal blocks with respect to the affine Lie algebira
the case of WZW theories that we considéthe conformal blocks can be thought of as forming
a basis in the Hilbert spadaf)c(s of CS theory onX. More precisely, there is a fiber bundle over
the moduli spaceVg , of Riemann surfaces of typey(n) with fibers isomorphic tcH)(iSn. The

conformal blocks aréparticulay sections of this bundle, see Ref. 31 for more detail. li’lote that the
sum in(7.1) is finite as we consider a rational CFT. As was explained in Ref. 14, the usual CFT
partition function is obtained by evaluatirig.1) on the “zero” connection. The formul&’.1) then
gives the factorization of the usual partition function, withl m,z,0] being what is usually called
the Virasoro conformal blocks.

Instead of evaluating7.1) on the zero connection one can integrate dkefhe result is the
partition function of the gauged model, which gives the dimension of the CS Hilbert space:

1
dimH§S=Wg JADA z$FTm,m,z,Z,A, Al (7.2

The value of the integral on the right-hand side is independent of m@aiytiositions of insertion
points.

A particular basis of states iﬂﬁs was described in Sec. Il and is given by stdte$). Let us
use these states in the holomorphic factorization forntdld). We can therefore think of the
partition function(correlatoy as an operator in the CS Hilbert space:

SCFT_
-3

inte

IT dimpe)|A¢>®<A¢|. (7.3
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The dimension of the CS Hilbert space is obtained by taking the CS trace of the above operator,
which gives(5.1).

The CFT partition functiori7.3) is the simplest possible modular invaridtite diagonglthat
can be constructed out of the chiral CFT data. There are other possible modular invariants, and it
is an ongoing effort to try to understand and classify different possibilities, see, e.g., the recent
paper' In this paper we only consider and give a TV interpretation of the simplest invariaht
Our TV interpretation might prove useful also for the classification program, but we do not pursue
this.

B. CFT patrtition function as a state

The formula(7.3) for the partition function, together with the operator/state correspondence of
the previous section imply thdtgFT can be interpreted as a particular state in the TV Hilbert
space. We introduce a special notation for this state:

1Z5Ty e m Y. (7.4)
In order to characterize this state we first of all note #gt' is just the identity operator ifi{ $°:
z3T=1. (7.5

The representatio(v.3) gives the decomposition of the identity over a complete basis of states in
HS$S. Using(6.10 we see that the stalg$™") is nothing else but the spin network state with zero
coloring, together with a set of strands labeled with representacasd taking into account the
punctures:

1= R). (7.6

Another thing that we are interested in is the component(Z&f') in the basis of spin
networks|l“¢). In view of (4.11) we have

(TYZ5FY=1(Xx S, R,I'Y). (7.7

The evaluation ifX X St is taken in the presence oflinks labeled by representatiofs Note that
all the dependence on the moduliXfs lost in(7.7). However, the colorings of I' can be thought
of as specifying the “geometry” oK, see more on this below.

C. Zero colored punctures

Here, to motivate the general formula to be obtained below, we deduce an expressib) for
for the case where the colors at all punctures are zero. In this case there is no extra links to be
inserted inXx S, and (7.7) reduces to(I'¥|I"'%). This can be evaluated using the prescription
(4.10. One immediately obtains

(rro)=n'rracm)=y>*3 11 dm, IT (6)).. (7.8
Pt err

veVp

HereC(I") is the chain-mail fol", as defined in the formulation of the theoréf6). In the last
formula the sum is taken over irreducible representations labeling the faces of the fat'gtaph
product of §-symbols is taken over all vertices &f and the §-symbols (§), are constructed
out of three representations labeling the edges incidant ahd three representations labeling the
faces adjacent at. The last formula is obtained using the 3-fusion recoupling iderig).
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D. Verlinde formula

The dimension of the CS Hilbert space can be obtained as the inner prod@§t bfwith the
“vacuum” state |I'°) EH)T(V, which corresponds to the spin network with zéndvial represen-
tation) coloring on all edges:

dim M $°=(1°|z5T). (7.9

Expression7.9) gives an unusual perspective on the Verlinde formula: it appears as a particular
case of a more general objgat?).

E. General formula

Here we find the result of the evaluati¢n.7). As we have just explained7.7) must reduce
to the Verlinde formulg2.10 when the grapi™ has zero colors. We have seen in Sec. V that, at
least for the case with no punctures, the Verlinde formula can be obtained from the chain-malil
C(T") with no graphl” inserted. We have also seen(ih8) that for the case with no punctures the
quantity(7.7) is given by the evaluation oE(I") together with the graph. Thus, a natural proposal
for (7.7) is that it is given by the evaluatiof®.6), with the graphl” added, and with an additional
set of curves taking into account the punctures. This results in:

Main Theorem: The CFT partition function (correlator), interpreted as a state of TV theory,
projected onto a spin network state is given by

(=22 11 s, 11 (60, (7.10
pst feFp iveVyp
A proof is given in the Appendix.

VIIl. DISCUSSION

Thus, the CFT partition functioricorrelatoj receives the interpretation of a state of TV
theory. This state is the TV “vacuum” given if¥.6) by the graph with zero coloring. Thus, quite
a nontrivial object from the point of view of the CFT, the partition function receives a rather
simple interpretation in the TV theory.

We note that, apart from the partition function stigg), there is another state # ™ with
a simple CS interpretation. This is the state that can be denoted as

Hyen™. (8.1)

It arises as the TV partition function for a handlebddy The TV invariant(4.5) for a manifold
with boundary has the interpretation of the TV inner producrbf with a spin network state:

TV(H,T?)=(H|TY). (8.2
In view of the Turaev theorert%.12,
(HITYY=1(HU—H,T"). (8.3

From this, and the relatioi6.11) for the matrix elements it can be seen that the siitp
corresponds in CS theory to the operator

H=|A%®(A?, (8.4)

which is just the projector on the CS “vacuum” stai@, given by the zero colored pant decom-

position graphA. We note that the TV statid) has a rather nontrivial expression when decom-
posed into the spin network basis. Thus, the described relation between CS and TV ttikeries
operator/state correspondehiea nontrivial duality in that simple objects on one side correspond
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to nontrivial objects on the other: CFT correlators, nontrivial from the point of view of CS, are the
TV “vacuum” states; the nontrivial TV handlebody stdte) is a rather trivial “vacuum” projec-
tor on the CS side.

We would like to emphasize that the CFT partition function st@gr ") does not coincide
with the TV partition function statéH) on a handlebodyd. However, the stat¢Z$™") can be
interpreted as a certain sum of TV handlebody states, provided a certain generalization of the
Turaev theorent4.12) holds. An attempt to prove this generalized Turaev theorem would lead us
too far, so we shall formulate it as a conjecture:

Conjecture 1: LeTV((H,A%),I'%) denote the Turaewiro invariant for a manifold H with a
spin networkA? inserted in it, and a spin network? on the boundary. This invariant can be
evaluated as the RTW invariant for the double&/H H:

TV((H,A®) TY)=I((H,A%)U—(H,A?),TY). (8.5

The justification for this conjecture is the theorél2), which is nothing but8.5 with no graph
A insertion. Let us now introduce a set of staleis¢ ) obtained as the TV partition function
inside a handlebodyd with a spin networkA ¢ inserted inside. From the point of view of CS
theory these states are just the projection operators:

He=|A?)(A?|. (8.6

Indeed, let us compute the TV inner product between the Htht&?) and a spin network state
T7):

(H,¢[T")=TV((H,A%),T'"). (8.7)

If the above conjecture holds this equals to the right hand sid8.6f. The later, on the other
hand, is equal to

(A?D¥A%). 8.9

This implies(8.6). Using relation(8.6) the CFT partition function as a state in TV Hilbert space
can be represented as a sum of HH-type TV states obtained as the TV partition function over a
handlebody with spin network insertion:

|ZCFT>:E¢ (llr;[e dimpe)|H’¢>' (8.9

This formula should be contrasted with the usual AAS/CFT prescription, which states that the CFT
partition function on the boundary is obtained as a sum of gravity partition functions on all
manifoldsH that haveX as a boundary. In other words, one must sum over all ways to fill in the
surfaceX so that the resulting 3-manifold is non-singular inside. As we see, the “holography”
arising in our context is different. Instead of taking a sum over all nonsingular mankblthst
haveX as the boundary, i(8.9) one takes some fixed, but sums over all labelings of the graph
A sitting insideH. The graphA is a 1-skeleton of; it can be thought of as a singularity inside
the handlebody. Thus, to obtain the CFT partition functiorodular invariant one sums over
labelings of the singularity insidd. This is a finite sum. The sum over different ways to fillXn
is, on the other hand, infinite. It would be of interest to find if there is any relation between these
two sums. If no such relation exists then the holographic prescrigBd® predicted by our
analysis is different from the AdS/CFT one.

Thus, we have seen that there are two TV states that correspond to CFT modular invariants:
one is the TV vacuun(7.6) that gives the diagonal modular invariant, the other is the handlebody
state|H) that gives the trivial modular invaria8.4). An interesting question is what other states
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in TV give CFT modular invariants. An answer to this question may be instrumental in under-
standing the structure of rational CFT’s, see the recent pafmra discussion along these lines.

Let us now discuss a physical interpretation of the form@ld 0. We note that the object
(7.7) can be interpreted as the CFT partition function on a surfdcehose “geometry” is
specified by the statd’¥). This “geometry” should not be confused with the conformal geometry
of X, on which the usual CFT partition function depends. Once the bl&fér) is projected onto
|T'?) the dependence on the moduliXfis traded for the dependence on the coloringf I". All
the dependence on the moduli is encoded in the spin network states. Let us first discuss the
dependence on the “geometry” as specified by the colored grdpland then make comments as
to the dependence ¢F¥) on the moduli.

To understand the spin netwof¥ as specifying the “geometry” oK we recall, see Sec. llI,
that|T'?) are eigenstates of the “momentum” operatersd/dw. In this sense they are states of
particular configuration of the field on the boundary. To understand this in more detail let us
consider the TV partition function T\H,I'¥). Let us take the simple example of the 4-punctured
sphere. Thus, we takd=B3, a 3-ball. We will put all representations at the punctures to be
trivial. In view of the Turaev theorer4.12), TV(B3,I'")=1(S%I'?). Thus, forX=5?, the TV
invariant is given simply by the evaluation of the spin netwbtkin S°. In our simple example
of the 4-punctures sphere this evaluation is a singteygnbol. Let us now restrict ourselves to the
caseG=SU(2). As wehave mentioned above, the TV theory in this case is nothing else but 3D
gravity with positive cosmological constant. On the other hand, it is known that the quantum
(6j)-symbol has, for larg& and large spins, an asymptotic of the exponential of the classical
Einstein—Hilbert action evaluated inside the tetrahedron:

(6j)~e'Svitel 4 ¢ c. (8.10

This fact was first observétiby Ponzano and Regge for the classicaj)¢8ymbol. In that case

one evaluates the classical gravity action inside a flat tetrahedron. The action reduces to a bound-
ary term(the usual integral of the trace of the extrinsic curvature }ewhich for a tetrahedron is

given by the so-called Regge action:

Snltet A=0]~2, lbe, (8.11)

where the sum is taken over the edges of the tetrahedron,.afdare the edge length and the
dihedral angle at the edge correspondingly. Dihedral angles are fixed once all the edge length are
specified. Ponzano and Regge observed that theg@nbol has the asymptotic .10 with the

action given by(8.1)) if spins labeling the edges are interpreted as the length of edges. A similar
(8.10 interpretation is true for the §J¢2) (6j)-symbol, as was shown in Ref. 33. The gravity
action in this case is that with a positive cosmological constant(k/27)?, and is evaluated in

the interior of tetrahedron i8® whose edge length are given by spins. To summarize, in these
examples the (p-symbol gets the interpretation of the exponential of the classical gravity action
evaluated inside a tetrahedron embedded in eiffeor S3, depending on whether one takes the
classical limitk—o or considers a quantum group with finike The tetrahedron itself is fixed

once all edge length are specified. The edge length are essentially given by the spins. We also note
that the grapH” in this example is the dual graph to the triangulated boundary of the tetrahedron
in question.

Thus, the TV partition functiorigiven by a single (§)-symbo) inside a 4-punctured sphere
(tetrahedrophas the interpretation of the gravity partition function inside the tetrahedron with its
boundary geometryedge lengthfixed by the spins. This interpretation 6 is valid also for
other surfaces. One should thinkB¥ as specifying the geometgon X. The TV invariant is, in
the semi-classical limit of large representations, dominated by the exponential of the classical
action evaluated inside the handlebody. The geometry inside is completely determined by the
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geometry of the surface, in other words, the spins. The interpretation is valid not only &), SU
but also for other groups. In such a general case the notion of “geometry” is more complicated, as
described by the fielé and the TV action(3.2).

The bottom line is that the TV spin network stal€¥) should be thought of as specifying the
“geometry” of X. The quantity(7.10 then receives the interpretation of the CFT partition func-
tion on a surfacéX whose “geometry” is specified by .

The other question is how the staié¥’) depend on the moduli of the surface. The fact that
the graphl is the same as the one used in the Peffnemordinatization of the moduli space
suggests that this dependence may be not very complicated. In fact, we believe that for the groups
SL(2,R) or SL(2,C) that are relevant in the description of the moduli spaces, the dependence is
rather simple: the described above “geometry” in this case must coincide with the usual conformal
geometry of the surface. An argument for this is as follows. In the Penner coordinatization of the
moduli space, or in any of its versiotis® the moduli are given by prescribing a set of real
numbers: one for each edge of the grapfhe numbers specify how two ideal triangles are glued
together across the edge, see Refs. 34, 35 for more detail. For the cas&wlgin(2,R), as is
relevant for, e.g., Liouville theory, see Ref. 36, the representations are also labeled by a single real
number. We believe that the Penner coordinates and the representations that label the edges are
simply dual to each other, in the sense of duality between the conjugacy classes of elements in the
group and its irreducible representations. A similar proposal for the relation between (®e SL
spin and length was made in Ref. 6. Thus, there is some hope that the depefiténoa the
moduli can be understood rather explicitly, at least for some groups. Having this said we note that
considerations of the present paper do not immediately generalize to the case of noncompact
groups, relevant for the description of the moduli spaces. It is an outstanding problem to develop
a noncompact analog of the Verlinde formula, not speaking of the for7uld®). Thus, at this
stage of the development of the subject considerations of this paragraph remain mere guesses.
However, progress along these lines may be instrumental in developing a better technique for
integrating over the moduli spaces, and thus, eventually, for a better understanding of the structure
of string theory.
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APPENDIX A: SOME RECOUPLING IDENTITIES
The 2-fusion identity:

(A1)

The 3-fusion identity:

#2)
ﬂk

The 3-vertex is normalized so that
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= N1 ks
ik (A3)

whereN;;, is the multiplicity with which the trivial representation appears in the tensor product of
i,j,k. For SU2) this is either zero or one. In order to obtdikl) from (A2) it is necessary to take
into account the normalizatiofA3).

Another recoupling identity uses the modular S-matrix:

. Sit
QLI * T pdimgdimy O e (A4)
i 1

The dots on the right-hand side mean that the open ends can be coniirectedrbitrary wayto
a larger graph.

APPENDIX B: PROOF

Here we give a proof of the main theorem.
1. Genus zero case

We start by working out the simplest case of the 3-punctured sphere. We dhtmge given
by a dumbbell. We thus need to compute the following evaluation:

(B1)

Here we have used the observati®¥) to replace two trivalent vertices dfUA by a link with

Q) inserted. Let us now slide the curve along whighs inserted to go all around the graphthus
making one of the curves of the chain-m@j{I'). In the next step we add two more curves from
C(T") that go around punctures, and at the same time add two meridian curve& witerted.
This addition of two pairs of) linked does not change the evaluation in view of the killing
property ofQ). The steps of sliding th€) and adding two new pairs of curves is shown here:

» Op
n k Y =1 k<) < (BZ)
= WS

The last step is to use the sliding property(»fto slide the links labeled,j insideT:
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n (B3)

One can now use the recoupling identi#%4) to remove the curves,j,k at the expense of
introducing a factor ofy 1S, /dim;, and similarly for other loops. Heré is the representation
on the loop fromC(I') going around the puncture The element() on that loop must be
expanded tq4.1). The factorn dim;, from that expansion is canceling the factor we got when
removing the loop. What is left is theS-matrix element;;, , with no extra factors. One can now
use the 3-fusion identityA2) to get the formula7.10. One uses the 3-fusion 2 times, which
producesy 2. This combines with the factor of in (B1)—(B3) to give 5, as prescribed by
(7.10 for the caseg=0,n= 3. One can easily extend this proof to the cgse0 arbitrary number

of punctures. To understand the general case, we first find a surgery representaionSor

2. Surgery representation for XX St

Let us first understand the genus one case. A surgery representatmglﬁosl is given by
the following link:

One must insert the elemefitinto all components, and evaluate $3. Representing all th€)’s

as the sum4.1) and using the recoupling identi)A4) it is easy to show thatB4) gives the
correct expressioml (L)=% S,/ /Sy, for the dimension. The same surgery representation was
noticed in Ref. 37. The generalization to higher genus and to a larger number of punctures is
straightforward. It is given by the following link:

(B5)

3. General case

We will work out only the(1,1) case. General case is treated similarly. We first note that the
formula (7.10 for the (1,1) case can be obtained as the result of the following evaluation:
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r /,X .

a E/D/ W
Q

This link is to be evaluated i8% and, as usual, the result multiplied by the factomofhis gives
(7.10 specialized to the casd,]). It is now a matter of patience to verify that by the isotropy
moves inS® the above link can be brought to the form:

o

Q

p (B7)

\\_/
This is the correct surgery representationXqr; X St with the grapHl” inside. Thus(7.10 indeed
gives the evaluatioh(Xx St,I'?), which, in view of(7.7), proves the theorem.
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