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It is known that the chiral part of any 2D conformal field theory defines a 3D
topological quantum field theory: quantum states of this TQFT are the CFT con-
formal blocks. The main aim of this paper is to show that a similar CFT/TQFT
relation exists also for the full CFT. The 3D topological theory that arises is a
certain ‘‘square’’ of the chiral TQFT. Such topological theories were studied by
Turaev and Viro; they are related to 3D gravity. We establish an operator/state
correspondence in which operators in the chiral TQFT correspond to states in the
Turaev–Viro theory. We use this correspondence to interpret CFT correlation func-
tions as particular quantum states of the Turaev–Viro theory. We compute the
components of these states in the basis in the Turaev–Viro Hilbert space given by
colored 3-valent graphs. The formula we obtain is a generalization of the Verlinde
formula. The later is obtained from our expression for a zero colored graph. Our
results give an interesting ‘‘holographic’’ perspective on conformal field theories in
two dimensions. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1745127#

I. INTRODUCTION

To put results of this paper in a somewhat general context we recall that any conformal field
theory~CFT! defines a topological quantum field theory~TQFT!, see Refs. 1–4. The TQFT arises
by extracting a modular tensor category from the CFT chiral vertex operator algebra. Then, as
explained in Ref. 5, any modular category gives rise to a 3D TQFT. The TQFT can be~partially!
described by saying that its Hilbert space is the space of~holomorphic! conformal blocks of the
CFT. The canonical example of such CFT/TQFT correspondence is the well-known relation be-
tween Wess–Zumino–Witten~WZW! and Chern–Simons~CS! theories. Let us emphasize that
this is always a relation between the holomorphic sector of the CFT~or its chiral part! and a
TQFT. As such it is not an example of a holographic correspondence, in which correlation func-
tions ~comprising both the holomorphic and antiholomorphic sectors! of CFT on the boundary
would be reproduced by some theory in bulk.

It is then natural to ask whether there is some 3D theory that corresponds to thefull CFT. A
proposal along these lines was put forward some time ago by Verlinde,6 who argued that a relation
must exist between the quantum Liouville theory~full, not just the chiral part! and 3D gravity.
Recently one of us presented7 some additional arguments in favor of this relation, hopefully
somewhat clarifying the picture. The main goal of the present paper is to demonstrate that such a
relation between the full CFT and a certain 3D theory exists for a large class of CFT’s. Namely,
we show that given a CFT there is a certain 3D field theory, which is a TQFT, and which is a
rather natural spin-off of the corresponding ‘‘chiral’’ TQFT. The TQFT in question is not new, it is
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the one defined by Turaev–Viro,8 and described in great detail in Ref. 5. This paper is thus aimed
at a clarification of the relation between the Turaev–Viro~TV! 3D TQFT’s and CFT’s in two
dimensions.

The point that given a CFT there exists a relation between the full CFT and some 3D TQFT
is to some extent contained in recent works on boundary conformal field theory, see Refs. 2, 3, 4,
9, and references therein, and also a more recent paper.10 As is emphasized, e.g., in Ref. 4, the full
CFT partition function on some Riemann surfaceX ~possibly with a boundary! is equal to the

chiral CFT partition function on the doubleX̃. There is then a certain ‘‘connecting’’ 3D manifold

M̃ whose boundary]M̃ is the doubleX̃. Using the chiral CFT/TQFT relation one obtains a 3D

TQFT in M̃ that reproduces the chiral partition function onX̃, and thus the full partition function
on X. This formalism turns out to be very useful for analyzing the case whenX has a boundary.

Our analysis was motivated by the above picture, but the logic is somewhat different. Instead

of working with the chiral TQFT in the connecting 3-manifoldM̃ we work directly with a
3-manifoldM whose boundary isX, and the Turaev–Viro TQFT onM . The two approaches are
clearly related as the TV theory is a ‘‘square’’ of the chiral TQFT. However, bringing the Turaev–
Viro TQFT into the game suggests some new interpretations and provides new relations. Thus,
most notably, we establish an operator/state correspondence in which the chiral TQFT operators
correspond to states in the TV theory, and the trace of an operator product corresponds to the TV
inner product. We use this to interpret the CFT correlators as quantum states of TV theory. Then,
using the fact that a basis in the Hilbert space of TV theory onX is given by colored trivalent
graph states, we will characterize the CFT correlation functions by finding their components in
this basis. Thus, the relation that we demonstrate is about a 3D TQFT on a 3-manifoldM and a
CFT on the boundaryX of M . It is therefore an example of a holographic correspondence, while
this is not obviously so for the correspondence based on a chiral TQFT in the connecting manifold

M̃ .
The holography discussed may be viewed by some as trivial, because the three-dimensional

theory is topological. What makes it interesting is that it provides a very large class of examples.
Indeed, there is a relation of this type for any CFT. Importantly, this holography is not limited to
any AdS type background, although a very interesting subclass of examples~not considered in this
paper, but see Ref. 7! is exactly of this type.

As the relation chiral CFT/TQFT is best understood for the case of a rational CFT, we shall
restrict our analysis to this case. Our constructions can also be expected to generalize to nonra-
tional and even noncompact CFT’s with a continuous spectrum, but such a generalization is
non-trivial, and is not attempted in this paper. Even with noncompact CFT’s excluded, the class of
CFT’s that is covered by our considerations, namely, rational CFT, is still very large. To describe
the arising structure in its full generality we would need to introduce the apparatus of category
theory, as it was done, e.g., in Ref. 5. In order to make the exposition as accessible as possible we
shall not maintain the full generality. We demonstrate the CFT/TQFT holographic relation using a
compact group WZW CFT~and CS theory as the corresponding chiral TQFT! as an example.

We shall often refer to the TV TQFT as ‘‘gravity.’’ For the case of chiral TQFT being the
Chern–Simons theory for a groupG5SU(2) this ‘‘gravity’’ theory is just the usual 3D Euclidean
gravity with positive cosmological constant. However, the theory can be associated to any CFT.
The reader should keep in mind its rather general character.

In order to describe the holographic correspondence in detail we will need to review~and
clarify! the relation between CS theory and gravity~or between the Reshetikhin–Turaev–Witten
and Turaev–Viro invariants! for a 3-manifold with boundary. We found that the expositions of this
relation available in the literature~see Refs. 5, 11! are rather brief and sketchy. This paper provides
a more detailed account and obtains new results. In particular, the operator/state correspondence
established in this paper is new.

Finally, we would like to emphasize that the approach presented in this paper is not equivalent
to that of Refs. 2, 3, 4, 9, even though it was motivated by these papers. Thus, most of our
discussion only concerns the diagonal-type partition functions, while Ref. 4 is applicable to the
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more general case. It would be of interest to study the relation to Refs. 2, 3, 4, 9 in more detail,
and also extend the approach presented here to modular invaraint partition functions of other
types. We shall not attempt this in the present paper.

The paper is organized as follows: In Sec. II we review the quantization of Chern–Simons
theory. Section III is devoted to the Turaev–Viro theory. We then review the definition of
3-manifold invariants in Sec. IV, and some facts on the Verlinde formula in Sec. V. The new
material starts in Sec. VI, where we discuss the CS/TV operator/state correspondence and the
arising relation between the CS and TV Hilbert spaces. In Sec. VII we interpret the CFT partition
function as a TV quantum state, and compute components of this state in a natural basis in the TV
Hilbert space given by graphs. We conclude with a discussion.

II. CHERN–SIMONS THEORY

This section is a rather standard review of CS theory. We discuss the CS phase space, the
Hilbert space that arises as its quantization, review the Verlinde formula, and a particular basis in
the CS Hilbert space that arises from a pant decomposition. The reader may consult, e.g., Refs. 12
and 5 for more details.

A. Action

The Chern–Simons~CS! theory is a three-dimensional TQFT of Witten-type. The CS theory
for a groupG is defined by the following action functional:

SCS
2 @A#5

k

4p E
M

TrS A∧dA1
2

3
A∧A∧AD2

k

4p E
]M

dz∧dz̄ Tr~AzAz̄!. ~2.1!

HereM is a three-dimensional manifold andA is a connection on the principalG-bundle overM .
For the case of a compactG that we consider in this paper the action is gauge invariant~modulo
2p! when k is an integer. The second term in~2.1! is necessary to make the action principle
well-defined on a manifold with boundary. To write it one needs to choose a complex structure on
]M . As ]M is a 2D Riemann surface, complex structures on it are same as conformal structures.
Thus, one has to make a choice of the conformal structure. Then the term in~2.1! is the one
relevant for fixingAz̄ on the boundary. Another possible choice of boundary condition is to fixAz .
The corresponding action is:

SCS
1 @A#5

k

4p E
M

TrS A∧dA1
2

3
A∧A∧AD1

k

4p E
]M

dz∧dz̄ Tr~AzAz̄!. ~2.2!

B. Partition function

The partition function arises~formally! by considering the path integral for~2.1!. For a closed
M it can be given a precise meaning through the surgery representation ofM and the
Reshetikhin–Turaev–Witten~RTW! invariant of links. Before we review this construction, let us
discuss the formal path integral for the case whenM has a boundary. For example, let the
manifold M be a handlebodyH. Its boundaryX5]H is a ~connected! Riemann surface. Recall
that TQFT assigns a Hilbert space to each connected component of]M , and a map between these
Hilbert spaces toM . The map can be heuristically thought of as given by the path integral. For a
manifold with a single boundary component, which is the case for a handlebodyH, TQFT onH
gives a mapF:H X

CS→C mapping the CS Hilbert space ofX into C. This map can be obtained from
the following Hartle–Hawking~HH! type state:

F~AI !5E
Az̄5AI

DA eiSCS
2 [A] . ~2.3!
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The path integral is taken over connections inH with the restriction ofA on X fixed. More
precisely, with the choice of boundary term in the action as in~2.1!, one fixes only the antiholo-
morphic partAI 5Az̄ of the connection onX, as defined by an auxiliary complex structure. The
result of the path integral~2.3! is the partition function of CS theory onH. It can be thought of as
a particular quantum stateF(AI ) in the CS Hilbert spaceH X

CS. The inner product inH X
CS is

~formally! defined as

^C1uC2&5E
A
DAI DAI e2 ~k/p!*]Md2z Tr(AI zAI z̄) C1~AI !C2~AI !. ~2.4!

Here d2z5dz∧dz̄/2i is the real measure on the boundary. The above mentioned mapF:H X
CS

→C is given by

F~C!5^FuC&5E
A
DAI DAI e2 ~k/p!*]Mdz2 Tr(AI zAI z̄) F~AI !C~AI !. ~2.5!

The stateF(AI )PH X
CS depends only on the topological nature of the 3-manifold and a framing of

M .

C. Phase space

To understand the structure of the CS Hilbert spaceH CS it is natural to use the Hamiltonian
description. Namely, near the boundary the manifold has the topologyX3R. Then the phase space
P CS of CS theory based on a groupG is the moduli space of flatG-connections onX modulo
gauge transformations:

P X
CS;A/G. ~2.6!

It is finite dimensional.
Let X be a ~connected! Riemann surface of type (g,n) with g>0, n.0, 2g1n22.0.

Denote the fundamental group ofX by p(X). The moduli spaceA can then be parametrized by
homomorphismsf:p(X)→G. The phase space is, therefore, isomorphic to

P X
CS;Hom~p~X!,G!/G, ~2.7!

where one mods out by the action of the group at the base point. The fundamental group is
generated bymi ,i 51,...,n andai ,bi ,i 51,...,g satisfying the following relation:

m1¯mn@a1 ,b1#¯@ag ,bg#51. ~2.8!

Here @a,b#5aba21b21. The dimension of the phase space can now be seen to be

dimP X
CS5~2g1n22!dimG. ~2.9!

The fact that~2.7! is naturally a Poisson manifold was emphasized in Ref. 13. The Poisson
structure described in Ref. 13 is the same as the one that comes from CS theory. For the case of
a compactX the space~2.7! is actually a symplectic manifold. For the case when punctures are
present the symplectic leaves are obtained by restricting the holonomy ofAI around punctures to
lie in some conjugacy classes in the group. An appropriate power of the symplectic structure can
be used as a volume form on the symplectic leaves. Their volume turns out to be finite. One thus
expects to get finite dimensional Hilbert spaces upon quantization.

D. Hilbert space

The Hilbert spaceH X
CS was understood12,14to be the same as the space of conformal blocks of

the chiral Wess–Zumino–Witten~WZW! theory on a genusg-surface withn vertex operators

2381J. Math. Phys., Vol. 45, No. 6, June 2004 2D conformal field theories and holography

Downloaded 11 May 2009 to 194.94.224.254. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



inserted. Let us fix irreducible representationsR5$r1 ,...,rn% of G labeling the punctures. The
dimension of each ofH X

CS can be computed using the Verlinde formula:15,16

dimH X
CS5(

r

Sr1r¯Srnr

S0r¯S0r
~S0r!222g. ~2.10!

The sum is taken over irreducible representationsr, Srr8 is the modular S-matrix, see~4.3! below
for the case of SU~2!, andS0r5h dimr , whereh is given by~4.2!.

E. Pant decomposition

The states fromH X
CS can be understood as the HH type states given by the path integral over

a handlebodyH with Wilson lines in representationsR intersecting the boundaryX transversally
at n points. A convenient basis inH X

CS can be obtained by choosing a pant decomposition ofX. A
pair of pants is a sphere with 3 holes~some of them can be punctures!. A Riemann surfaceX of
type (g,n) can be represented by 2g1n22 pants glued together. For example, the surface of type
~0,4! with 4 punctures can be obtained by gluing together 2 spheres each with 2 punctures and one
hole. Note that a pant decomposition is not unique. Different pant decompositions are related by
simple ‘‘moves.’’ A pant decomposition can be conveniently encoded in a tri-valent graphD with
2g1n22 vertices and 3g12n23 edges. Each vertex ofD corresponds to a pair of pants, and
each internal edge corresponds to two holes glued together. Open-ended edges ofD end at punc-
tures. We shall call such edges ‘‘loose.’’ There are exactlyn of them. The graphD can be thought
of as a 1-skeleton of the Riemann surfaceX, or as a Feynman diagram that corresponds to the
string world-sheetX. The handlebodyH can be obtained fromD as its regular neighborhood
U(D), so thatD is insideH and the loose edges ofD end at the punctures. Let us label the loose
edges by representationsR and internal edges by some other~non-null! irreducible representa-
tions. It is convenient to formalize the labeling ofD in a notion ofcoloring f. A coloring f is the
map

f:ED→I, f~e!5rePI ~2.11!

from the setED of edges ofD to the setI of ~non-null! irreducible representations of the quantum
groupG. The loose edges are colored by representations fromR. The CS path integral onH with
the spin networkDf inserted is a state inH X

CS. See below for a definition of spin networks.
Changing the labels on the internal edges one gets states that span the wholeH X

CS. Different
choices of pant decomposition ofH ~and thus ofD! lead to different bases inH X

CS.

F. Inner product

The inner product~2.4! of two states of the type described can be obtained by the following
operation. Let one state be given by the path integral overH with Df inserted and the other byH
with Df8 inserted, where both the graph and/or the coloring may be different in the two states. Let
us invert orientation of the first copy ofH and glue2H to H across the boundary~using the
identity homomorphism! to obtain some 3D spaceH̃ without boundary. We will refer toH̃ as the
double of H. For H being a handlebody withg handles the doubleH̃ has the topology of a
connected sum:

H̃;#g21S23S1. ~2.12!

The loose ends ofD are connected at the punctures to the loose ends ofD8 to obtain a colored
closed graphDføDf8 insideH̃. The inner product~2.4! is given by the CS path integral overH̃

with the spin networkDføDf8 inserted. This path integral is given by the RTW evaluation of
DføDf8 in H̃, see below for a definition of the RTW evaluation.
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III. GRAVITY

The material reviewed in this section is less familiar, although is contained in the literature.
We give the action for Turaev–Viro theory, discuss the phase space, then introduce certain impor-
tant graph coordinatization of it, define spin networks, and describe the TV Hilbert space. A useful
reference for this section is the book of Turaev~Ref. 5 and Ref. 17!.

A. Action

What we refer to as ‘‘gravity’’ arises as a certain ‘‘square’’ of CS theory. We will also refer to
this gravity theory as Turaev–Viro~TV! theory, to have uniform notations~CS-TV!.

To see how the TV theory~gravity! arises from CS theory, let us introduce two connection
fields A andB. Consider the corresponding CS actionsSCS@A#,SCS@B#. Introduce the following
parametrization of the fields:

A5w1S p

k De, B5w2S p

k De. ~3.1!

Here w is a G-connection, ande is a one-form valued in the Lie algebra ofG. The TV theory
action is essentially given by the differenceSCS

2 @A#2SCS
1 @B#, plus a boundary term such that the

full action is

STV@w,e#5E
M

TrS e∧f~w!1
L

12
e∧e∧eD . ~3.2!

The boundary condition for this action is that the restrictionwO of w on X5]M is kept fixed. Here
L is the ‘‘cosmological constant’’ related tok as k52p/AL. For G5SU(2) the TV theory is
nothing else but the Euclidean gravity with positive cosmological constantL. We emphasize,
however, that the theory is defined for other groups as well. Moreover, it also exists as a square of
a chiral TQFT for any TQFT, that is even in cases when the chiral TQFT is not a CS theory.

B. Path integral

Similarly to CS theory, one can consider HH type states given by the path integral on a
manifold with a single boundary component. Thus, for a manifold being a handlebodyH we get
the TV partition function:

T~wO !5E
wuX5wO

DwDe eiSTV[w,e] . ~3.3!

The integral is taken over bothw,e fields in the bulk with the restrictionwO of the connection fixed
on the boundary. The TV partition functionT(wO ) is thus a functional of the boundary connection.
It can also be interpreted as a particular state in the TV Hilbert spaceH X

TV .
States fromH X

TV are functionals of the boundary connection. The inner product on this space
can be formally defined by the formula

^C1uC2&5
1

Vol G EA
DwO C1~wO !C2~wO ! ~3.4!

similar to ~2.4!. Note, however, that the measure in~3.4! is different from that in~2.4!. We shall
see this below when we describe how to compute TV inner products in practice.

C. Relation between TV and CS states

Formally, the following relation between TV and CS states exists. As one can easily check, the
difference of two CS actions in the parametrization~3.1! is given by
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SCS
2 @A#2SCS

1 @B#5STV@w,e#1
1

2 E]M
Tr~e∧w!2

k

2p E
]M

dz∧dz̄ TrS wzwz̄1S p

k D 2

ezez̄D .

~3.5!

Therefore,

eiSCS
2 [A] 2 iSCS

1 [B] 2 ~k/p!*]Md2z Tr(Az̄Bz)5eiSTV[w,e] 1 ~2p/k!*]Mdz2 Tr(ezez̄). ~3.6!

Hered2z5dz∧dz̄/2i is the real measure on]M. Note that the last term in the exponential on the
left hand side is the same as in the CS inner product~2.4!. From this expression one can read off
a prescription for obtaining the TV stateT(wO ). Indeed, let us integrate the left-hand side over bulk
A,B, keepingAz̄ ,Bz fixed on the boundary. Let us denote the result byF(Az̄ ,Bz). We have

F~Az̄ ,Bz!5C~Az̄!C̄~Bz! e2 ~k/p!*]Md2z Tr(Az̄Bz). ~3.7!

To get T~w! one must takeF(Az̄ ,Bz) in the parametrization~3.1!, multiply the result by an
exponential factor and integrate over the restrictioneO of e on the boundary:

T~wO !5E DeO e2 ~2p/k! *]Mdz2 Tr(ezez̄) FS wO z̄1S p

k DeO z̄ ,wO z2S p

k DeOzD . ~3.8!

The functionalF(Az̄ ,Bz) is a vector in the Hilbert spaceH CS
^ H CS. We should view~3.8! as a

transform between this Hilbert space andH TV. This transform will play an important role in what
follows. Below we shall see how the result of the transform~3.8! can be found in practice.

D. Phase space

The TV phase space is basically two copies ofP CS, but with an unusual polarization. The
polarization onP TV is given bye, w, which are canonically conjugate variables. Note that there is
no need to choose a complex structure in order to define this polarization.

It turns out to be very convenient to think ofP TV as some deformation of the cotangent
bundleT* (A/G) over the moduli spaceA/G of flat connections onX. Note, however, that the TV
connectionwO on the boundary is not flat, so the configuration space for TV theory is not really the
moduli space of flat connections. One does getA/G as the configurational space in an important
limit k→`, in which thee∧3 term drops from the action~3.2!. Thus, it is only in this limit that the
TV phase space is the cotangent bundleT* (A/G). For a finitek the TV phase space is compact~as
consisting of two copies ofP CS), while T* (A/G) is not. We will see, however, that it is essentially
correct to think ofP TV as a deformation ofT* (A/G) even in the finitek case. The compactness
of P TV will manifest itself in the fact that after the quantization the range of eigenvalues ofe is
bounded from above.

These remarks being made we write

P TV;Tk* ~A/G!, ~3.9!

whereTk* is certain compact version of the cotangent bundle. The phase space becomes the usual
cotangent bundle in thek→` limit. We will not need any further details on spacesTk* . As we
shall see the quantization ofP TV is rather straightforward once the quantization of the cotangent
bundle is understood.

We note that the dimension

dimP TV52~2g1n22!dimG ~3.10!

is twice the dimension of the phase space of the corresponding CS theory, as required. A conve-
nient parametrization of the cotangent bundle phase space can be obtained by using graphs.
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E. Graphs

The graphs one considers are similar to those that arise in the Penner coordinatization18 of the
moduli space of punctured Riemann surfaces. Namely, givenX, introduce a trivalent closed fat
graphG with the numberF of faces equal to the numbern of punctures. Such a graph can be
obtained by triangulating the surfaceX using punctures as vertices, and then constructing a dual
graph. What arises is exactly a graphG. See Fig. 1 for examples ofG. Note that different
triangulations lead to different graphs, soG is by no means unique.

Because the graph is trivalent 3V52E, where V is the number of vertices andE is the
number of edges. We also have the Euler characteristics relation:

F2E1V5222g. ~3.11!

We thus get that the numberE of edges ofG is E53(2g1n22).
Note that the graphG does not coincide with the graphD introduced in the previous section.

There is, however, a simple relation between them that is worth noting. Let us, as in the previous
section, form the doubleH̃5Hø2H. It is a closed 3-manifold obtained by gluing two copies of
the handlebodyH across the boundaryX. Let us take a graphD in H, and another copy ofD in
2H. These graphs touch the boundary]H5X at the punctures. Gluing these two copies ofD at
the punctures one obtains a closed graphDøD in H̃. It is a trivalent graph with 2(2g1n22)
vertices and 3(2g1n22) edges. Now consider the regular neighborhoodU(DøD) of DøD in
Hø2H. This is a handlebody, whose boundary is of genus

G52g1n21. ~3.12!

The surface]U(DøD) can be obtained by taking two copies ofX, removing some small disks
around the punctures, and identifying the resulting circular boundaries to get a closed surface
without punctures. We have the following:

Lemma: The surface]U(DøD) is a Heegard surface for Hø2H. The complement of
U(DøD) in Hø2H is a handlebody that is the regular neighborhood U(G) of the graphG on
X.

Proof: The complement ofU(DøD) in Hø2H can be seen to be the cylinderX3@0,1# with
n holes cut in it. So, it is indeed a handlebody of genus~3.12!. Its 1-skeleton that can be obtained
by choosing a pant decomposition is the trivalent graphG.

F. Graph connections

GivenG equipped with an arbitrary orientation of all the edges, one can introduce what can be
called graph connections. Denote the set of edgese of G by E. We use the same letter both for the
setE of edges and for its dimension. A graph connectionA is an assignment of a group element
to every edge of the graph:

A:E→G, A~e!5gePG. ~3.13!

FIG. 1. A fat graphG for the ~a! sphere with 4 punctures;~b! torus with one puncture.

2385J. Math. Phys., Vol. 45, No. 6, June 2004 2D conformal field theories and holography

Downloaded 11 May 2009 to 194.94.224.254. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



One can also introduce a notion of graph gauge transformations. These act at vertices ofG. A
gauge transformation is parametrized byV group elements. Let us introduce:

H:V→G, H~v !5hvPG. ~3.14!

HereV is the set of vertices ofG. For an edgeePE denote bys(e) ~source! the vertex from which
e originates, and byt(e) ~target! the vertex wheree ends. The action of a gauge transformationH
on a graph connectionA is now as follows:

AH~e!5hs(t)
21 ge hs(e) . ~3.15!

The space of graph connections modulo graph gauge transformations can now be seen to be
isomorphic toG^ E/G^ V. Its dimension is given by~2.9!. We thus get a parametrization of the CS
phase spaceP CS based on a graphG:

P CS;G^ E/G^ V. ~3.16!

The TV phase space is the cotangent bundle

P TV;Tk* ~G^ E/G^ V!. ~3.17!

As we shall see, it is rather straightforward to quantize the noncompact,k→` version ofP TV,
that is the cotangent bundle. The quantum states are given by spin networks.

G. Spin networks

To quantize the cotangent bundleT* (A/G) one introduces a Hilbert space of functionals on
the moduli space of flat connections. A complete set of such functionals is given by spin networks.
These functions will thus form~an over-complete! basis in the Hilbert space of TV theory. They
also serve as observables for CS quantum theory, see below.

Before we define these objects, let us introduce some convenient notations. Denote the set of
irreducible representationsr of the quantum groupG by I. Introduce a coloringc:E→I,c(e)
5re of the edges ofG with irreducible representations ofG. A spin networkGc is a functional on
the space of graph connections:

Gc:G^ E→C. ~3.18!

Given a connectionA the value ofGc(A) is computed as follows. For every edgee take the group
elementge given by the graph connection in the irreducible representationre . One can think of
this as a matrix with two indices: one for the sources(e) and the other for the targett(e).
Multiply the matrices for all the edges ofG. Then contract the indices at every tri-valent vertex
using an intertwining operator. The normalization of intertwiners that we use is specified in the
Appendix. The definition we gave is applicable toG5SU(2). Inthis case the trivalent intertwiner
is unique up to normalization. For other gauge groups one in addition has to label the vertices of
G with intertwiners, so that a spin network explicitly depends on this labeling. The functional
~3.18! so constructed is invariant under the graph gauge transformations~3.14! and is thus a
functional on the moduli space of flat connections modulo gauge transformations. As such it is an
element of the Hilbert space of TV theory. It is also an observable on the CS phase space~3.16!.

H. Quantization

We can define the Hilbert spaceH TV of Turaev–Viro theory to be the space of gauge-
invariant functionalsC(wO ) on the configurational spaceG^ E/G^ V. This gives a quantization of
the k→` limit, but a modification for the case of finitek is straightforward. As we discussed
above, a complete set of functionals onG^ E/G^ V is given by spin networks. We denote the state
corresponding to a spin networkGc by uGc&. They form a basis of states inH TV:
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H TV5Span$uGc&%. ~3.19!

One can construct certain momenta operators, analogs ofe;]/]wO in the continuum theory. Spin
networks are eigenfunctions of these momenta operators. To specialize to the case of finitek one
has to replace all spin networks by quantum ones. That is, the coloring of edges ofG must use
irreducible representations of the quantum group, which there is only a finite set.

The spin network statesuGc& form an overcomplete basis inH TV, in that the TV inner product
between differently colored states is nonzero. However, these states do give a partition of unity in
that

(
c

S )
ePEG

dimreD uGc&^Gcu ~3.20!

is the identity operator inH TV. This will become clear from our definition of the TV inner
product, and the definition of the TV invariant in the next section.

It seems from the way we have constructed the Hilbert spaceH TV that it depends on the graph
G. This is not so. ChoosingG differently one gets a different basis in the same Hilbert space. To
describe an effect of a change ofG it is enough to give a rule for determining the inner products
between states from two different bases.

I. Inner product

The inner product onH TV is given~formally! by the integral~3.4! over boundary connections.
To specify the measure in this integral, one has to consider the path integral for the theory.
Namely, consider a 3-manifoldX3@21,1# over X, which is a 3-manifold with two boundary
components, each of which is a copy ofX. The TV path integral overX3@21,1# gives a kernel
that should be sandwiched between the two states whose inner product is to be computed. Thus,
the measure in~3.4! is defined by the TV path integral. The measure, in particular, depends on the
level k.

In practice the inner product of two statesGc Gc8, where both the graphs and the coloring
may be different, is computed as the TV invariant for the manifoldX3@21,1# with Gc on X

3$21% andGc8 on X3$1%. Further details on the TV inner product are given in the next section.

IV. 3-MANIFOLD INVARIANTS

In this section we review the definition of RTW and TV invariants. The main references for
this section are Refs. 19 and 20.

A. Reshetikhin–Turaev–Witten invariant

The RTW invariant of a closed 3-manifold~with, possibly, Wilson loops or spin networks
inserted! gives a precise meaning to the CS path integral for this manifold. The definition we give
is for M without insertions, and is different from, but equivalent to the original definition in Ref.
21. We follow Roberts.19

Any closed oriented 3-manifoldM can be obtained fromS3 by a surgery on a link inS3. Two
framed links represent the same manifoldM if and only if they are related by isotopy or a
sequence of Kirby moves, that is either handle-slides or blow-ups, see Refs. 19 or 22 for more
detail. LetL be a link giving the surgery representation ofM . DefineVLPC to be the evaluation
of L in S3 with a certain elementV inserted along all the components ofL, paying attention to the
framing. The elementV is defined as follows, see Ref. 19. It is an element ofH T

CS, whereT is the
torus, and is given by

V5h(
r

dimr Rr . ~4.1!
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The sum is taken over all irreducible representationsrPI, the quantity dimr is the quantum
dimension, andRr is the state inH T

CS obtained by inserting the 0-framed unknot in ther’s
representation along the cycle that is noncontractible inside the solid torus havingT as its bound-
ary. The quantityh is given by

h225(
r

dimr
2 . ~4.2!

For example, forG5SU(2) h5A2/k sin(p/k)5S00, where

Si j 5A2

k
sinS ~ i 11!~ j 11!p

k D , k>3. ~4.3!

With the normalization chosen, theS3 value of a 0-framed unknot withV attached ish21, while
61 framed unknots withV attached give certain unit modulus complex numbersr 61. For G
5SU(2) r 5exp(2ip/422p i (31k2)/4k).

Let us now continue with the definition of the RTW invariant. Define bys(L) the signature
of the 4-manifold obtained by attaching 2-handles to the 4-ballB4 alongL,S35]B4. Define

I ~M !5hr 2s(L) VL. ~4.4!

This is the RTW invariant of the manifoldM presented byL. We use the normalization of
Roberts,19 in which the RTW invariant satisfiesI (S3)5h,I (S23S1)51, as well as the connected
sum ruleI (M1#M2)5h21I (M1)I (M2).

B. Turaev–Viro invariant

The original Turaev–Viro invariant is defined8 for triangulated manifolds. A more convenient
presentation20 uses standard 2-polyhedra. Another definition is that of Roberts.19 It uses a handle
decomposition ofM . We first give the original definition of Turaev and Viro.

Let T be a triangulation of 3D manifoldM . We are mostly interested in case thatM has a
boundary. Denote byVT the number of vertices ofT, and by$e%,$ f %,$t% collections of edges,
faces and tetrahedra ofT. Choose a coloringm of all the edges, so thatm(e)5re is the color
assigned to an edgee. The Turaev–Viro invariant is defined as

TV~M ,Tu]M ,mu]M !5h2VT(
m

)
e¹]M

dimre)t
~6 j ! t . ~4.5!

Here (6j ) t is the 6j -symbol constructed out of 6 colors labeling the edges of a tetrahedront, and
the product is taken over all tetrahedrat of T. The product of dimensions of representations
labelling the edges is taken over all edges that do not lie on the boundary. The sum is taken over
all coloringsm keeping the coloring on the boundary fixed. The invariant depends on the restric-
tion Tu]M of the triangulation to the boundary]M , and on the coloringmu]M of this restriction.
The invariant is independent of an extension ofTu]M insideM .

Note that the TV invariant is constructed in such a way that for a closed 3-manifoldM
5M1øM2 obtained by gluing two manifoldsM1 ,M2 with a boundary across the boundary the
invariant TV(M ) is easily obtained once TV(M1,2,T1,2u]M1,2

,m1,2u]M1,2
) are known. One has to

triangulate the boundary ofM1,2 in the same wayT1u]M1
5T2u]M2

, multiply the invariants for
M1,2, multiply the result by the dimensions of the representations labelling the edges of
T1,2u]M1,2

5Tu]M , and sum over these representations. The result is TV(M ):

TV~M !5 (
mu]M

S )
eP]M

dimreDTV~M1 ,Tu]M ,mu]M !TV~M2 ,Tu]M ,mu]M !. ~4.6!
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This, together with the definition of the TV inner product as the TV invariant forX3I establishes
that ~3.20! is indeed the identity operator inH TV.

C. Roberts invariant

We shall now introduce the more general invariant of Roberts. We consider the case without
boundary.

Consider a handle decompositionD of M . The canonical example to have in mind is the
handle decomposition coming from a triangulationT of M . A thickening of the corresponding
dual complexT* then gives a handle decomposition. The vertices of the dual complex~baricenters
of tetrahedra of the triangulation! correspond to 0-handles, edges ofT* ~faces ofT) correspond to
1-handles, faces ofT* ~edges ofT) give 2-handles, and 3-cells ofT* ~vertices of T) give
3-handles. The union of 0- and 1-handles is a handlebody. Choose a system of meridian disks for
it, one meridian disk for every 1-handle. Now specify the system of attaching curves for 2-handles.
If the handle decomposition came from a triangulation there are exactly 3 attaching curves along
each 1-handle. Frame all meridian and attaching curves using the orientation of the boundary of
the handlebody. Denote the corresponding link byC(M ,D). Insert the elementV on all the
components ofC(M ,D), paying attention to the framing, and evaluateC(M ,D) in S3. This gives
the Roberts invariant forM :

R ~M !5hd31d0VC~M ,D !. ~4.7!

Hered3 ,d0 are the numbers of 3- and 0-handles correspondingly. Note that to evaluateVC(M ,D)
in S3 one needs to first specify an embedding. The result of the evaluation does not depend on the
embedding, see Ref. 19. Moreover, the invariant does not depends on a handle decompositionD
and is thus a true invariant ofM .

When the handle decompositionD comes from a triangulationT the Roberts invariant~4.7!
coincides with the Turaev–Viro invariant~4.5!. An illustration of this fact is quite simple and uses
the 3-fusion~A2!, see Ref. 19 for more detail.

Lemma (Roberts): The described above system C(M ,D) of meridian and attaching curves for
a handle decomposition D of M gives a surgery representation of M#2M .

This immediately implies the theorem of Turaev and Walker:

TV ~M !5h I ~M#2M !5uI ~M !u2. ~4.8!

Below we shall see an analog of this relation for a manifold with boundary. All the facts men-
tioned make it clear that the TV invariant is a natural spin-off of the CS~RTW! invariant.

D. TV inner product

Recall that the Turaev–Viro inner product between the graph statesuGc& was defined in the
previous section as the TV path integral onX3I . The TV path integral is rigorously defined by the
TV invariant ~4.5!. Here we describe how to compute the inner product in practice. The prescrip-
tion we give is from Ref. 20, Sec. 4.d. We combine it with the chain-mail idea of Roberts19 and
give this chain-mail prescription.

The product^GcuGc8& is obtained by a certain face model onX. Namely, consider the
3-manifoldX3I , whereI is the interval@21,1#. PutGc on X3$21% andGc8 on X3$1%. Both
graphs can be projected ontoX5X3$0%, keeping track of under- and upper-crossings. By using
an isotopy ofX the crossings can be brought into a generic position of double transversal crossing
of edges. We thus get a graph onX, with both 3 and 4-valent vertices. The 3-valent vertices come
from those ofGc,Gc8, and 4-valent vertices come from edge intersections between the two
graphs. The inner product is given by evaluation inS3 of a certain chain-mail that can be con-
structed fromGc,Gc8. Namely, let us take one 0-framed link for every face, and one 0-framed link
around every edge of the graphGcøGc8 on X. We get the structure of links at vertices as is shown
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in the following drawings:

~4.9!

Denote byC(G,G8) the obtained collection of links. The inner product is given by

^GcuGc8&5hVG1VG81Vint~GcøGc8. VC~GøG8!!. ~4.10!

HereVG ,VG8 are the numbers of 3-valent vertices of graphsG,G8 correspondingly, andVint is the
number of 4-valent vertices coming from intersections. The expression in brackets must be evalu-
ated inS3. Using the 3-fusion~A2! one can easily convince oneself that~4.10! coincides with the
prescription given in Ref. 20.

We would also like to note an important relation for the TV inner product that expresses it as
the RTW evaluation:

^GcuGc8&5I ~X3S1,Gc,Gc8!. ~4.11!

The evaluation is to be carried out in the 3-manifoldX3S1. This relation that does not seem to
have appeared in the literature. A justification for it comes from our operator/state correspondence,
see below. Let us also note that a direct proof of a particular subcase of~4.11! corresponding to
one of the graphs being zero colored is essentially given by our proof in the Appendix of the main
theorem of Sec. VII. We decided not to attempt a direct proof of~4.11! in its full generality.

Turaev theorem: Let us note the theorem 7.2.1 from Ref. 5. It states that the TV invariant for
H with the spin networkGc on X5]H equals the RTW evaluation ofGc in Hø2H:

TV ~H,Gc!5I ~Hø2H,Gc!. ~4.12!

This is an analog of~4.8! for a manifold with a single boundary, and is somewhat analogous to our
relation ~4.11! for the TV inner product.

V. VERLINDE FORMULA

The purpose of this somewhat technical section is to review some facts about the Verlinde
formula for the dimension of the CS Hilbert space. Considerations of this section will motivate a
more general formula given in Sec. VII for the CFT partition function projected onto a spin
network state. This section can be skipped on the first reading.

A. Dimension of the CS Hilbert space

Let us first obtain a formula for the dimension of the CS Hilbert space that explicitly sums
over all different possible states. This can be obtained by computing the CS inner product. Indeed,
as we have described in Sec. II, a basis inH X

CS is given by spin networksDf. With our choice of
the normalization of the 3-valent vertices the spin network statesuDf& are orthogonal but not
orthonormal. Below we will show that the dimension can be computed as

dimH X
CS5(

f
S )

int e
dimreD ^DfuDf&5(

f
S )

int e
dimreD I ~Hø2H,DføDf!, ~5.1!

where the sum is taken over the colorings of the internal edges. The coloring of the edges ofD that
end at punctures are fixed.
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To evaluateDføDf we proceed as follows. Let us project the graphDøD to X. We note that
there is a canonical way to do this projection so that there are exactly two 3-valent vertices of
DøD on each pair of pants, and there are exactly two edges ofDøD going through each
boundary circle of a pair of pants. For example, the part ofDøD projected on a pair of pants with
no punctures looks like

~5.2!

One gets a similar structure when projecting on a pair of pants with punctures. In that case the two
holes in the center are replaced by punctures and loose edges ofD are connected at the punctures
to the loose edges of the other copy ofD.

Let us now form a linkLD whose components are circles along which one glues the pant
boundaries together. There are 3g1n23 such circles, in one-to-one correspondence with internal
edges ofD. We push all components ofLD slightly out of X. Using the prescription of the
Appendix of Ref. 20 for computing the RTW evaluation ofM with a graph inserted, one obtains

I ~Hø2H,DføDf!5h3g1n23~DføDf.VLD!. ~5.3!

The evaluation on the right-hand side is to be taken inS3. This relation establishes~5.1!. Indeed,
there are exactly two edges ofDøD linked by every component ofLD . Using the 2-fusion we get
them connected at each pair of pants, times the factor ofh21/dimre

. The factors ofh are canceled
by the prefactor in~5.3!, and the factors of 1/dimre

are canceled by the product of dimensions in
~5.1!. What remains is the sum over the colorings of the internal edges of the product ofNi jk for
every pair of pants. This gives the dimension. This argument also shows that the statesuDf& with
different coloringf are orthogonal.

B. Computing the dimension: Verlinde formula

The sum over colorings of the internal edges in~5.3! can be computed. This gives the Verlinde
formula. Let us sketch a simple proof of it, for further reference.

We first observe that, using the 3-fusion, the Verlinde formula for the 3-punctured sphere can
be obtained as a chain-mail. Namely,

~5.4!

The Verlinde formula forNi jk can be obtained by using the definition~4.1! of V and the recou-
pling identity ~A4! of the Appendix. The computation is as follows:

~5.5!

This is the Verlinde formula~2.10! for the case of a 3-punctured sphere. We have used the fact that
h diml5S0l . The above proof of the Verlinde formula forNi jk is essentially that from Ref. 12.
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The general Verlinde formula~2.10! can be obtained using a pant decomposition ofX and
taking a sum over labelings of the internal edges ofD of the product ofNi jk one for every pair of
pants. To get~2.10! one just has to use the unitarity( lSil Sjl 5d i j of the S-matrix.

C. Verlinde formula using graph G: No punctures

Here we find a different representation of the Verlinde dimension. It was noticed in Ref. 23
that the Verlinde formula can be obtained using a certain gauge theory on a graph onX. Here we
reinterpret this result using a chain-mail. We first derive a formula for a Riemann surface without
punctures. It is obtained by starting from a graphG corresponding to a surface with some number
n of punctures. Then a sum is carried over the labels at the punctures, so the end result depends
only on the genusg, but not onn.

Consider a fat trivalent graphG that representsXg,n . Let us form a chain-mailC(G) as
follows. Let us introduce a curve for every face of the fat graphG, and a linking curve around
every 3(2g1n22) edges ofG, so that the obtained structure of curves at each 3-valent vertex is
as in ~4.9!. Insert the elementV along each component ofC(G), and evaluate the result inS3.
What is evaluated is just the chain-mail forG, no spin network corresponding toG is inserted. We
get the following result:

Theorem „Boulatov…: The dimension of the Hilbert space of CS states on Xg is equal:

dimH Xg

CS5hVG VC~G!. ~5.6!

The expression on the right-hand side is independent of the graphG that is used to evaluate it.
To prove this formula we use the 2-strand fusion. We get that all of then different colorings

on the links ofG become the same. Denote byr the corresponding representation. The result is
then obtained by a simple counting. Each 3(2g1n22) of links around edges introduces the
factor ofh21/dimr . Every 2(2g1n22) vertices ofG gives a factor of dimr . Each ofn faces of
G gives another factor ofh dimr . All this combines, together with the prefactor to give

dimH Xg

CS5(
r

~h dimr!222g, ~5.7!

which is the Verlinde formula~2.10! for the case with no punctures.

VI. OPERATORÕSTATE CORRESPONDENCE

This section is central to the paper. Here we discuss a one-to-one correspondence between
observables of CS theory and quantum states of TV theory. The fact that the algebra of observ-
ables in CS theory is given by graphs is due to Refs. 24 and 25, see also references below. The
notion of the connecting 3-manifoldM̃ is from Refs. 4 and 9. The operator/state correspondence
of this section, as well as the arising relation between the CS and TV Hilbert spaces, although to
some extent obvious, seems new.

A. CS observables and relation between the Hilbert spaces

We have seen that a convenient parametrization of the moduli spaceA/G is given by the graph
G connections. An expression for the CS Poisson structure in terms of graph connections was
found in Ref. 24. A quantization of the corresponding algebra of observables was developed in
Refs. 25–29~see also Ref. 30 for a review!. As we have seen in Sec. III a complete set of

functionals onA/G is given by spin networks. Spin networks thus become operatorsĜc in the CS
Hilbert spaceH X

CS. We therefore get a version of an operator/state correspondence, in which TV
states correspond to observables of CS theory.

The fact that a CS/TV operator/state correspondence must hold follows from the relation
between the phase spaces of the two theories. Namely, as we have seen in Sec. III, the TV phase
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space is given by two copies of the phase space of Chern–Simons theory:P TV5P CS
^ P̄CS, where

the two copies have opposite Poisson structures. This means that in the quantum theory the
following relation must hold:

H X
TV;H X

CS
^ H 2X

CS ;End~H X
CS!. ~6.1!

Thus, the TV Hilbert space is isomorphic to the direct product of two copies ofH CS. The above
isomorphism is given formally by the formula~3.8!. We shall denote it byI . It identifies the TV

spin network statesuGc& with the CS spin network observablesĜc. This statement deserves some
explanation. The TV spin network states are wave functionals of the connectionwO :T(wO )5T(Az

1Bz ,Az̄1Bz̄), whereas Chern–Simons states are functionalsC(Az ,Bz̄). Thus, the isomorphism
~6.1! can be understood as a change of polarization. Being a change of polarization it intertwines
the operator algebras acting on the two sides of~6.1!. The polarization we have chosen for the TV
Viro model is the one for whichê;(Â2B̂) acts trivially on the TV vacuum state. Using the

intertwinning property ofI this means thatI (u0&TV) is commuting with all CS operatorsĜc. It is
therefore proportional to the identity in End (H X

CS). It follows from here that the operator that
corresponds to the TV stateuGc& is the CS spin network operator:

I ~ uGc&TV)5ĜcI ~ u0&TV)}Ĝc. ~6.2!

Thus, the described isomorphism~6.1! given by the change of polarization indeed identifies TV
graph states with the CS spin network operators.

Another important fact is as follows. Being a change of polarization, the isomorphism~6.1!
preserves the inner product. Since the inner product on the right-hand side of~6.1! is just the CS
trace, we get an important relation:

TrCS~ ĜĜ8!5^GuG8&TV . ~6.3!

In other words, the trace of the product of operators in the CS Hilbert space is the same as the
inner product in the TV theory. This relation is central to the operator/state correspondence under
consideration. Let us now describe the isomorphism~6.1! more explicitly.

B. Connecting manifold M̃

A very effective description of the above operator/state correspondence uses the ‘‘connecting
manifold’’ M̃ . It is a 3-manifold whose boundary is the Schottky doubleX̃ of the Riemann surface
X. Recall that the Schottky double of a Riemann surfaceX is another Riemann surfaceX̃. For the
case of a closedX, the surfaceX̃ consists of two disconnected copies ofX, with all moduli
replaced by their complex conjugates in the second copy. ForX with a boundary~the case not
considered in this paper, but of relevance to the subject of boundary CFT, see, e.g., Refs. 4, 9! the
doubleX̃ is obtained by taking two copies ofX and gluing them along the boundary. Consider a
3-manifold

M̃5X̃3@0,1#/s, ~6.4!

wheres is an antiholomorphic map such thatX̃/s5X, ands reverses the ‘‘time’’ direction. See,
e.g., Ref. 4 for more detail on the construction ofM̃ . The manifoldM̃ has a boundary]M̃5X̃,
and the original surfaceX is embedded intoM̃ . For the case of a closedX, relevant for this paper,
the manifoldM̃ has the topologyX3I , whereI is the intervalI 5@0,1#, see Fig. 2.

Consider the RTW evaluation of a spin networkGc in M̃ . It gives a particular state inH
X̃

CS
:

I ~M̃ ,Gc!PH
X̃

CS
. ~6.5!
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However, we have

H
X̃

CS
;H X

CS
^ H 2X

CS ;End~H X
CS!. ~6.6!

Thus ~6.5! gives an operator inH X
CS for every graph stateuGc&PH X

TV .

C. Operator product

In the realization described the product of two operatorsĜc,Ĝc8 is an element ofH
X̃

CS

obtained by evaluating inM̃ both Gc andGc8:

I ~M̃ ,Gc,Gc8!PH
X̃

CS
. ~6.7!

D. Trace

The trace of an operatorĜc is obtained by gluing the two boundaries ofM̃ to form a closed
manifold of the topologyX3S1:

TrCS~ Ĝc!5I ~X3S1,Gc!. ~6.8!

One can similarly obtain the trace of an operator product:

TrCS~ ĜcĜc8!5I ~X3S1,Gc,Gc8!. ~6.9!

In view of ~6.3!, the above relation establishes~4.11!.

E. Identity operator

It is easy to see that the operator/state correspondence defined by~6.5! is such that the zero
colored graphG0 corresponds to the identity operator in the CS Hilbert space:

Ĝ05 Î . ~6.10!

Indeed, insertion ofG0 into M̃ is the same asM̃ with no insertion, whose RTW evaluation gives
the identity operator inH CS.

F. Matrix elements

We recall that a basis inH X
CS is obtained by choosing a pant decomposition ofX, or, equiva-

lently, choosing a trivalent graphD, with a coloringf. The matrix elementŝDfuĜcuDf8& are
obtained by the following procedure. Take a handlebodyH with a graphDf in it, its loose ends

FIG. 2. The manifoldM̃ .
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ending at the punctures. The boundary ofH is X, so that we can glueH from the left toM̃ . One
similarly takes2H with Df8 in it, and glues it toM̃ from the right. One connects the punctures
on the boundary ofH to those on the boundary of2H by strands insideM̃ . What one gets is a
closed manifold of the topologyHø2H, with closed graphsDføDf8 andGc sitting inside it.
The matrix elements are obtained as the evaluation:

^DfuĜcuDf8&5I ~Hø2H,DføDf8,Gc!. ~6.11!

VII. CFT PARTITION FUNCTION AS A STATE

Here we interpret the CFT partition function~correlator! as a particular state in the Hilbert
space of TV theory. We also compute components of this state in the basis of states given by spin
networks.

A. CFT partition function

The partition function of any CFT holomorphically factorizes. To understand this holomorphic
factorization, and the relation to the chiral TQFT, it is most instructive to consider the partition
function as a function of an external connection. Namely, let CFT be the WZW model coupled to
an external connection~gauged model!, and consider its partition functionZX

CFT@m,m̄,z,z̄,AI z ,AI z̄#
on X. Note that no integration is carried overAI yet. Thus, the above quantity is not what is usually
called the gauged WZW partition function. The later is obtained by integrating overAI . The
introduced partition function depends on the moduli~both holomorphic and antiholomorphic!
m,m̄, on positions of insertions of vertex operators coordinatized byz,z̄, and on both the holo-
morphic and anti-holomorphic components of the connectionAI on X. The partition function
holomorphically factorizes according to

ZX
CFT@m,m̄,z,zO,AI z ,AI z̄#5(

i
C i@m,z,AI z#C̄ i@m̄,z̄,AI z̄#. ~7.1!

HereC i@m,z,AI z# are the~holomorphic! conformal blocks with respect to the affine Lie algebra~in
the case of WZW theories that we consider!. The conformal blocks can be thought of as forming
a basis in the Hilbert spaceH X

CS of CS theory onX. More precisely, there is a fiber bundle over
the moduli spaceMg,n of Riemann surfaces of type (g,n) with fibers isomorphic toH Xg,n

CS . The

conformal blocks are~particular! sections of this bundle, see Ref. 31 for more detail. Note that the
sum in ~7.1! is finite as we consider a rational CFT. As was explained in Ref. 14, the usual CFT
partition function is obtained by evaluating~7.1! on the ‘‘zero’’ connection. The formula~7.1! then
gives the factorization of the usual partition function, withC i@m,z,0# being what is usually called
the Virasoro conformal blocks.

Instead of evaluating~7.1! on the zero connection one can integrate overAI . The result is the
partition function of the gauged model, which gives the dimension of the CS Hilbert space:

dimH X
CS5

1

Vol G EA
DAI ZX

CFT@m,m̄,z,z̄,AI z ,AI z̄#. ~7.2!

The value of the integral on the right-hand side is independent of moduli~or positions of insertion
points!.

A particular basis of states inH X
CS was described in Sec. II and is given by statesuDf&. Let us

use these states in the holomorphic factorization formula~7.1!. We can therefore think of the
partition function~correlator! as an operator in the CS Hilbert space:

ẐX
CFT5(

f
S )

int e
dimreD uDf& ^ ^Dfu. ~7.3!
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The dimension of the CS Hilbert space is obtained by taking the CS trace of the above operator,
which gives~5.1!.

The CFT partition function~7.3! is the simplest possible modular invariant~the diagonal! that
can be constructed out of the chiral CFT data. There are other possible modular invariants, and it
is an ongoing effort to try to understand and classify different possibilities, see, e.g., the recent
paper.10 In this paper we only consider and give a TV interpretation of the simplest invariant~7.3!.
Our TV interpretation might prove useful also for the classification program, but we do not pursue
this.

B. CFT partition function as a state

The formula~7.3! for the partition function, together with the operator/state correspondence of
the previous section imply thatZX

CFT can be interpreted as a particular state in the TV Hilbert
space. We introduce a special notation for this state:

uZX
CFT&PH X

TV . ~7.4!

In order to characterize this state we first of all note thatẐX
CFT is just the identity operator inH X

CS:

ẐX
CFT5 Î . ~7.5!

The representation~7.3! gives the decomposition of the identity over a complete basis of states in
H X

CS. Using~6.10! we see that the stateuZX
CFT& is nothing else but the spin network state with zero

coloring, together with a set of strands labeled with representationsR and taking into account the
punctures:

uZX
CFT&5uG0,R&. ~7.6!

Another thing that we are interested in is the components ofuZX
CFT& in the basis of spin

networksuGc&. In view of ~4.11! we have

^GcuZX
CFT&5I ~X3S1,R,Gc!. ~7.7!

The evaluation inX3S1 is taken in the presence ofn links labeled by representationsR. Note that
all the dependence on the moduli ofX is lost in~7.7!. However, the coloringc of G can be thought
of as specifying the ‘‘geometry’’ ofX, see more on this below.

C. Zero colored punctures

Here, to motivate the general formula to be obtained below, we deduce an expression for~7.7!
for the case where the colors at all punctures are zero. In this case there is no extra links to be
inserted inX3S1, and ~7.7! reduces tô GcuG0&. This can be evaluated using the prescription
~4.10!. One immediately obtains

^GcuG0&5hVG~Gc.VC~G!!5h222g(
$r f %

)
f PFG

dimr f )vPVG

~6 j !v . ~7.8!

HereC(G) is the chain-mail forG, as defined in the formulation of the theorem~5.6!. In the last
formula the sum is taken over irreducible representations labeling the faces of the fat graphG, the
product of 6j -symbols is taken over all vertices ofG, and the 6j -symbols (6j )v are constructed
out of three representations labeling the edges incident atv, and three representations labeling the
faces adjacent atv. The last formula is obtained using the 3-fusion recoupling identity~A2!.
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D. Verlinde formula

The dimension of the CS Hilbert space can be obtained as the inner product ofuZX
CFT& with the

‘‘vacuum’’ state uG0&PH X
TV , which corresponds to the spin network with zero~trivial represen-

tation! coloring on all edges:

dimH X
CS5^G0uZX

CFT&. ~7.9!

Expression~7.9! gives an unusual perspective on the Verlinde formula: it appears as a particular
case of a more general object~7.7!.

E. General formula

Here we find the result of the evaluation~7.7!. As we have just explained,~7.7! must reduce
to the Verlinde formula~2.10! when the graphG has zero colors. We have seen in Sec. V that, at
least for the case with no punctures, the Verlinde formula can be obtained from the chain-mail
C(G) with no graphG inserted. We have also seen in~7.8! that for the case with no punctures the
quantity~7.7! is given by the evaluation ofC(G) together with the graph. Thus, a natural proposal
for ~7.7! is that it is given by the evaluation~5.6!, with the graphG added, and with an additional
set of curves taking into account the punctures. This results in:

Main Theorem: The CFT partition function (correlator), interpreted as a state of TV theory,
projected onto a spin network state is given by

^GcuZX
CFT&5h222g2n(

$r f %
)

f PFG

Sr ir f i
)

vPVG

~6 j !v . ~7.10!

A proof is given in the Appendix.

VIII. DISCUSSION

Thus, the CFT partition function~correlator! receives the interpretation of a state of TV
theory. This state is the TV ‘‘vacuum’’ given in~7.6! by the graph with zero coloring. Thus, quite
a nontrivial object from the point of view of the CFT, the partition function receives a rather
simple interpretation in the TV theory.

We note that, apart from the partition function stateuZCFT&, there is another state inH TV with
a simple CS interpretation. This is the state that can be denoted as

uH&PH TV. ~8.1!

It arises as the TV partition function for a handlebodyH. The TV invariant~4.5! for a manifold
with boundary has the interpretation of the TV inner product ofuH& with a spin network state:

TV~H,Gc!5^HuGc&. ~8.2!

In view of the Turaev theorem~4.12!,

^HuGc&5I ~Hø2H,Gc!. ~8.3!

From this, and the relation~6.11! for the matrix elements it can be seen that the stateuH&
corresponds in CS theory to the operator

Ĥ5uD0& ^ ^D0u, ~8.4!

which is just the projector on the CS ‘‘vacuum’’ stateD0, given by the zero colored pant decom-
position graphD. We note that the TV stateuH& has a rather nontrivial expression when decom-
posed into the spin network basis. Thus, the described relation between CS and TV theories~the
operator/state correspondence! is a nontrivial duality in that simple objects on one side correspond
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to nontrivial objects on the other: CFT correlators, nontrivial from the point of view of CS, are the
TV ‘‘vacuum’’ states; the nontrivial TV handlebody stateuH& is a rather trivial ‘‘vacuum’’ projec-
tor on the CS side.

We would like to emphasize that the CFT partition function stateuZX
CFT& does not coincide

with the TV partition function stateuH& on a handlebodyH. However, the stateuZX
CFT& can be

interpreted as a certain sum of TV handlebody states, provided a certain generalization of the
Turaev theorem~4.12! holds. An attempt to prove this generalized Turaev theorem would lead us
too far, so we shall formulate it as a conjecture:

Conjecture 1: LetTV((H,Df),Gc) denote the Turaev–Viro invariant for a manifold H with a
spin networkDf inserted in it, and a spin networkGc on the boundary. This invariant can be
evaluated as the RTW invariant for the double Hø2H:

TV~~H,Df!,Gc!5I~~H,Df!ø2~H,Df!,Gc!. ~8.5!

The justification for this conjecture is the theorem~4.12!, which is nothing but~8.5! with no graph
D insertion. Let us now introduce a set of statesuH,f & obtained as the TV partition function
inside a handlebodyH with a spin networkDf inserted inside. From the point of view of CS
theory these states are just the projection operators:

Ĥf5uDf&^Dfu. ~8.6!

Indeed, let us compute the TV inner product between the stateuH,Df& and a spin network state
uGc&:

^H,fuGc&5TV~~H,Df!,Gc!. ~8.7!

If the above conjecture holds this equals to the right hand side of~8.5!. The later, on the other
hand, is equal to

^DfuĜcuDf&. ~8.8!

This implies~8.6!. Using relation~8.6! the CFT partition function as a state in TV Hilbert space
can be represented as a sum of HH-type TV states obtained as the TV partition function over a
handlebody with spin network insertion:

uZCFT&5(
f

S )
int e

dimreD uH,f &. ~8.9!

This formula should be contrasted with the usual AdS/CFT prescription, which states that the CFT
partition function on the boundary is obtained as a sum of gravity partition functions on all
manifoldsH that haveX as a boundary. In other words, one must sum over all ways to fill in the
surfaceX so that the resulting 3-manifoldH is non-singular inside. As we see, the ‘‘holography’’
arising in our context is different. Instead of taking a sum over all nonsingular manifoldsH that
haveX as the boundary, in~8.9! one takes some fixedH, but sums over all labelings of the graph
D sitting insideH. The graphD is a 1-skeleton ofH; it can be thought of as a singularity inside
the handlebody. Thus, to obtain the CFT partition function~modular invariant! one sums over
labelings of the singularity insideH. This is a finite sum. The sum over different ways to fill inX
is, on the other hand, infinite. It would be of interest to find if there is any relation between these
two sums. If no such relation exists then the holographic prescription~8.9! predicted by our
analysis is different from the AdS/CFT one.

Thus, we have seen that there are two TV states that correspond to CFT modular invariants:
one is the TV vacuum~7.6! that gives the diagonal modular invariant, the other is the handlebody
stateuH& that gives the trivial modular invariant~8.4!. An interesting question is what other states
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in TV give CFT modular invariants. An answer to this question may be instrumental in under-
standing the structure of rational CFT’s, see the recent paper10 for a discussion along these lines.

Let us now discuss a physical interpretation of the formula~7.10!. We note that the object
~7.7! can be interpreted as the CFT partition function on a surfaceX whose ‘‘geometry’’ is
specified by the stateuGc&. This ‘‘geometry’’ should not be confused with the conformal geometry
of X, on which the usual CFT partition function depends. Once the stateuZX

CFT& is projected onto
uGc& the dependence on the moduli ofX is traded for the dependence on the coloringc of G. All
the dependence on the moduli is encoded in the spin network states. Let us first discuss the
dependence on the ‘‘geometry’’ as specified by the colored graphGc, and then make comments as
to the dependence ofuGc& on the moduli.

To understand the spin networkGc as specifying the ‘‘geometry’’ ofX we recall, see Sec. III,
that uGc& are eigenstates of the ‘‘momentum’’ operatorse;]/]wO . In this sense they are states of
particular configuration of thee field on the boundary. To understand this in more detail let us
consider the TV partition function TV(H,Gc). Let us take the simple example of the 4-punctured
sphere. Thus, we takeH5B3, a 3-ball. We will put all representations at the punctures to be
trivial. In view of the Turaev theorem~4.12!, TV(B3,Gc)5I (S3,Gc). Thus, forX5S2, the TV
invariant is given simply by the evaluation of the spin networkGc in S3. In our simple example
of the 4-punctures sphere this evaluation is a single 6j -symbol. Let us now restrict ourselves to the
caseG5SU(2). As wehave mentioned above, the TV theory in this case is nothing else but 3D
gravity with positive cosmological constant. On the other hand, it is known that the quantum
(6 j )-symbol has, for largek and large spins, an asymptotic of the exponential of the classical
Einstein–Hilbert action evaluated inside the tetrahedron:

~6 j !;eiSTV[tet]1c.c. ~8.10!

This fact was first observed32 by Ponzano and Regge for the classical (6j )-symbol. In that case
one evaluates the classical gravity action inside a flat tetrahedron. The action reduces to a bound-
ary term~the usual integral of the trace of the extrinsic curvature term!, which for a tetrahedron is
given by the so-called Regge action:

STV@ tet,L50#;(
e

l eue , ~8.11!

where the sum is taken over the edges of the tetrahedron, andl e ,ue are the edge length and the
dihedral angle at the edge correspondingly. Dihedral angles are fixed once all the edge length are
specified. Ponzano and Regge observed that the (6j )-symbol has the asymptotic of~8.10! with the
action given by~8.11! if spins labeling the edges are interpreted as the length of edges. A similar
~8.10! interpretation is true for the SUq(2) (6j )-symbol, as was shown in Ref. 33. The gravity
action in this case is that with a positive cosmological constantL5(k/2p)2, and is evaluated in
the interior of tetrahedron inS3 whose edge length are given by spins. To summarize, in these
examples the (6j )-symbol gets the interpretation of the exponential of the classical gravity action
evaluated inside a tetrahedron embedded in eitherR3 or S3, depending on whether one takes the
classical limitk→` or considers a quantum group with finitek. The tetrahedron itself is fixed
once all edge length are specified. The edge length are essentially given by the spins. We also note
that the graphG in this example is the dual graph to the triangulated boundary of the tetrahedron
in question.

Thus, the TV partition function~given by a single (6j )-symbol! inside a 4-punctured sphere
~tetrahedron! has the interpretation of the gravity partition function inside the tetrahedron with its
boundary geometry~edge length! fixed by the spins. This interpretation ofGc is valid also for
other surfaces. One should think ofGc as specifying the geometrye on X. The TV invariant is, in
the semi-classical limit of large representations, dominated by the exponential of the classical
action evaluated inside the handlebody. The geometry inside is completely determined by the
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geometry of the surface, in other words, the spins. The interpretation is valid not only for SU~2!,
but also for other groups. In such a general case the notion of ‘‘geometry’’ is more complicated, as
described by the fielde and the TV action~3.2!.

The bottom line is that the TV spin network statesuGc& should be thought of as specifying the
‘‘geometry’’ of X. The quantity~7.10! then receives the interpretation of the CFT partition func-
tion on a surfaceX whose ‘‘geometry’’ is specified byGc.

The other question is how the statesuGc& depend on the moduli of the surface. The fact that
the graphG is the same as the one used in the Penner18 coordinatization of the moduli space
suggests that this dependence may be not very complicated. In fact, we believe that for the groups
SL~2,R! or SL~2,C! that are relevant in the description of the moduli spaces, the dependence is
rather simple: the described above ‘‘geometry’’ in this case must coincide with the usual conformal
geometry of the surface. An argument for this is as follows. In the Penner coordinatization of the
moduli space, or in any of its versions34,35 the moduli are given by prescribing a set of real
numbers: one for each edge of the graphG. The numbers specify how two ideal triangles are glued
together across the edge, see Refs. 34, 35 for more detail. For the case whenG5SLq(2,R), as is
relevant for, e.g., Liouville theory, see Ref. 36, the representations are also labeled by a single real
number. We believe that the Penner coordinates and the representations that label the edges are
simply dual to each other, in the sense of duality between the conjugacy classes of elements in the
group and its irreducible representations. A similar proposal for the relation between the SL~2!
spin and length was made in Ref. 6. Thus, there is some hope that the dependenceuGc& on the
moduli can be understood rather explicitly, at least for some groups. Having this said we note that
considerations of the present paper do not immediately generalize to the case of noncompact
groups, relevant for the description of the moduli spaces. It is an outstanding problem to develop
a noncompact analog of the Verlinde formula, not speaking of the formula~7.10!. Thus, at this
stage of the development of the subject considerations of this paragraph remain mere guesses.
However, progress along these lines may be instrumental in developing a better technique for
integrating over the moduli spaces, and thus, eventually, for a better understanding of the structure
of string theory.
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APPENDIX A: SOME RECOUPLING IDENTITIES

The 2-fusion identity:

~A1!

The 3-fusion identity:

~A2!

The 3-vertex is normalized so that
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~A3!

whereNi jk is the multiplicity with which the trivial representation appears in the tensor product of
i , j ,k. For SU~2! this is either zero or one. In order to obtain~A1! from ~A2! it is necessary to take
into account the normalization~A3!.

Another recoupling identity uses the modular S-matrix:

~A4!

The dots on the right-hand side mean that the open ends can be connected~in an arbitrary way! to
a larger graph.

APPENDIX B: PROOF

Here we give a proof of the main theorem.

1. Genus zero case

We start by working out the simplest case of the 3-punctured sphere. We chooseG to be given
by a dumbbell. We thus need to compute the following evaluation:

~B1!

Here we have used the observation~5.4! to replace two trivalent vertices ofDøD by a link with
V inserted. Let us now slide the curve along whichV is inserted to go all around the graphG, thus
making one of the curves of the chain-mailC(G). In the next step we add two more curves from
C(G) that go around punctures, and at the same time add two meridian curves withV inserted.
This addition of two pairs ofV linked does not change the evaluation in view of the killing
property ofV. The steps of sliding theV and adding two new pairs of curves is shown here:

~B2!

The last step is to use the sliding property ofV to slide the links labeledi , j insideG:
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~B3!

One can now use the recoupling identity~A4! to remove the curvesi , j ,k at the expense of
introducing a factor ofh21Sii 8 /dimi 8 and similarly for other loops. Herei 8 is the representation
on the loop fromC(G) going around the puncturei . The elementV on that loop must be
expanded to~4.1!. The factorh dimi 8 from that expansion is canceling the factor we got when
removing the loopi . What is left is theS-matrix elementSii 8 , with no extra factors. One can now
use the 3-fusion identity~A2! to get the formula~7.10!. One uses the 3-fusion 2 times, which
producesh22. This combines with the factor ofh in ~B1!–~B3! to give h21, as prescribed by
~7.10! for the caseg50,n53. One can easily extend this proof to the caseg50 arbitrary number
of punctures. To understand the general case, we first find a surgery representation forX3S1.

2. Surgery representation for XÃS1

Let us first understand the genus one case. A surgery representation forX1,13S1 is given by
the following link:

~B4!

One must insert the elementV into all components, and evaluate inS3. Representing all theV’s
as the sum~4.1! and using the recoupling identity~A4! it is easy to show that~B4! gives the
correct expressionhI (L)5(r8Srr8 /S0r8 for the dimension. The same surgery representation was
noticed in Ref. 37. The generalization to higher genus and to a larger number of punctures is
straightforward. It is given by the following link:

~B5!

3. General case

We will work out only the~1,1! case. General case is treated similarly. We first note that the
formula ~7.10! for the ~1,1! case can be obtained as the result of the following evaluation:
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~B6!

This link is to be evaluated inS3 and, as usual, the result multiplied by the factor ofh. This gives
~7.10! specialized to the case~1,1!. It is now a matter of patience to verify that by the isotropy
moves inS3 the above link can be brought to the form:

~B7!

This is the correct surgery representation forX1,13S1 with the graphG inside. Thus,~7.10! indeed
gives the evaluationI (X3S1,Gc), which, in view of ~7.7!, proves the theorem.
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