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Robustness of equilibrium in the Kyle model
of informed speculation

Alex Boulatov∗and Dan Bernhardt
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Abstract

We analyze a static Kyle (1983) model in which a risk-neutral informed trader
can use arbitrary (linear or non-linear) deterministic strategies, and a finite number of
market makers can use arbitrary pricing rules. We establish a strong sense in which the
linear Kyle equilibrium is robust : the first variation in any agent’s expected payoff with
respect to a small variation in his conjecture about the strategies of others vanishes
at equilibrium. Thus, small errors in a market maker’s beliefs about the informed
speculator’s trading strategy do not reduce his expected payoffs. Therefore, the original
equilibrium strategies remain optimal and still constitute an equilibrium (neglecting
the higher-order terms.) We also establish that if a non-linear equilibrium exists, then
it is not robust.
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1 Introduction

A central feature of information-based models of financial markets is that each strategic

market participant considers not only knowledge about asset fundamentals, but also makes

tremendously sophisticated and accurate assessments of the strategies that other agents

employ. Typically, researchers assume away all errors in those assessments. However, in

complicated financial market speculation settings, it seems likely that agents’s beliefs about

the strategies of others may be slightly mis-specified. Concretely, a market maker may get

an informed speculator’s strategy slightly wrong.

In this paper, we investigate the robustness of the static Kyle (1983) model of strategic

trading to errors of this form. The Kyle (1983) model generalizes the Kyle (1985) model

to a setting with a finite number J of market makers who obtain finite expected profits in

equilibrium. In principle, Kyle (1983) allows a monopolistically-informed trader to choose a

possibly non-linear trading strategy, and market makers to simultaneously choose possibly

non-linear supply schedules. He establishes that there is a unique equilibrium in which the

trading strategy and pricing rules are linear. With many market makers, J → ∞, Kyle

shows that market makers submit competitive supply schedules, and that the pricing rule

becomes informationally efficient, i.e., the model reduces to the static Kyle (1985) model.

Note that, apart from a particular limiting case of Kyle (1985) model1, the uniqueness of

equilibrium for the Kyle (1983) model has not been established.

Our contribution is twofold. We first establish a remarkable robustness property of the

linear Kyle equilibrium: the first variation of any agent’s expected payoff with respect to a

small variation of her own conjectures about the strategies of others vanishes in equilibrium.

In particular, small errors in the beliefs of a market maker about the trading strategy of

the informed speculator do not reduce the market maker’s expected payoff, and the original

equilibrium strategies (more precisely, their functional forms) still constitute an equilibrium.

In fact, we show that each market participant is also indifferent to small errors in the beliefs

that others hold. As slight errors in beliefs do not affect agents’ expected profits and cor-

responding strategies, this means that the linear Nash equilibrium remains an equilibrium;

and it follows that considering the limit J → ∞, the standard linear equilibrium of Kyle

(1985) model is robust. We next establish that if a non-linear Nash equilibrium to the Kyle

(1983) model exists, then it is not similarly robust to slight mis-specifications in beliefs.

Our notion of robustness is even more demanding than that considered by other re-

1Boulatov, Kyle, and Livdan (2013) prove uniqueness of equilibrium for the Kyle (1985) model.
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searchers, who typically only require that small perturbations of beliefs lead to ε-best re-

sponses and ε-equilibria for every nearby perturbation (see Stauber (2006, 2011) or Barelli

(2009)). In our case, we require that ε-variations of beliefs may only lead to higher-order

O (ε2) variations of equilibrium strategies and expected payoffs. Of course, our characteri-

zation solely pertains to the Kyle model.

2 The Model

We begin with a review of the Kyle (1983) model. A single risk neutral informed trader,

privately observes an asset’s liquidation value v, which is drawn from a normal distribution

with mean zero and variance σ2
0. Liquidity traders trade a quantity u, which is drawn in-

dependently from a normal distribution with mean zero and variance σ2
u. After observing

the liquidation value v, but not the level of noise trading u, the informed trader chooses a

quantity x to trade. This “market order” x does not depend on the equilibrium price, but

does depend on the observed liquidation value v. The informed trader’s strategy is thus a

function X (·) that details for each value of v, the traded quantity x = X (v).

The informed trader and liquidity traders trade in a market with J ≥ 3 risk-neutral,

profit-maximizing market makers. Market makers know the joint distribution of v and u, but

do not see either realization. Each market maker k = 1, . . . J submits a limit order described

by a non-discriminatory supply schedule yk (P ) that details for each price the quantity it will

supply. The equilibrium price clears the market, Y (P ) =
∑J

k=1 yk(P ) = x + u: the pricing

rule P (·) is defined as an inverse function2 of the aggregate demand, i.e., P (Y (ξ)) = ξ, for

ξ ∈ R.

A symmetric Nash equilibrium consists of a trading strategy X∗(·) and a supply schedule

Y ∗(·) that are mutual best responses, i.e., are profit maximizing for the insider and market

makers. Kyle solves for the following linear equilibrium trading strategy and pricing rule:

X∗(v) = β∗v, and Y ∗(P ) = (Λ∗)
−1 P, (1)

with

β∗ =

(
J − 2

J − 1

)
σu
σv
, Λ∗ =

σv
2σu

(
J − 1

J − 2

)
, (2)

which we refer to as the standard linear solution. From (1), it follows that the pricing rule

P ∗(·) is linear and given by

P ∗(Y ) = Λ∗Y. (3)

2We will show that Y (·) is monotonic and therefore invertible.
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Note that (1) and (3) reduce to the linear solutions of Kyle (1985) in the limit as J → ∞.

In what follows, we normalize both σu and σv to one, so that the parameters of standard

linear solution (1) take the form

β∗ =

(
J − 2

J − 1

)
, and Λ∗ =

1

2

(
J − 1

J − 2

)
. (4)

We focus on symmetric Nash equilibria. To examine non-linear trading strategies, it is

useful to develop notation that describes the reaction functions of agents to possibly non-

linear trading strategies of the others. The notation yk(P ;XM,k (·)) indicates that the supply

schedule of market maker k depends on both a scalar argument given by the execution price

P and the function argument given by market maker k’s conjecture about the insider’s

demand function XM,k (·). Given our focus on symmetric equilibria, beliefs are the same:

XM,k (·) ≡ XM (·), k = 1, ..J .

In what follows, we make extensive use of functionals, i.e., functions mapping both scalars

and other functions into scalars. To keep notation clear, we follow the above example by plac-

ing scalar arguments in front of functional arguments, separating the two types of arguments

by a semi-colon, and using a dot to indicate function arguments.

2.1 Parametric example

As a preview, to convey the nature of our finding, we consider a linear parametric example.

We take the model formulated above, and suppose that both the informed trader and market

makers follow linear strategies

X(v) = β∗v, and Y (P ) = (Λ∗)
−1 P, (5)

characterized by the coefficients β∗ and Λ∗ representing an informed trader’s trading inten-

sity and the inverse market depth, respectively. In the symmetric BNE described by Kyle

(1983), the conjectures that all agents make about each other’s coefficients are correct. We

now derive what happens to the payoffs of the market makers and informed trader when

their conjectures are slightly wrong, but the conjectures still retain a linear structure.

In particular, we suppose that all J market makers have the same linear conjecture

X(v) = βcv about the informed agent’s trading strategy, a conjecture that can be wrong.

Analogously, we suppose that the informed agent’s linear conjecture about Λ is Λc.

Proposition 1 1. If market makers conjecture that the informed trader’s trading intensity

3



is βc, when the trader’s actual intensity is β = β∗, the expected payoff of each market maker is

πM = A
βc

β2
c + β2

∗
, (6)

with A =
E[(β∗v+u)2]
J(J−2)

=
1+(J−2

J−1)
2

J(J−2)
. Importantly, π̄M is a smooth function of βc and achieves

its maximum when the conjecture is correct, βc = β∗.

2. If the informed trader’s conjecture about the inverse market depth is Λc when the

actual market maker strategy is Λ∗, then the informed trader’s expected profit is

πI =
1

2Λ∗
ξ

(
1− ξ

2

)
, (7)

where ξ = Λ∗
Λc

. Further, π̄I is a smooth function of ξ and therefore of Λc, and achieves its

maximum when ξ = 1, i.e., when the conjecture is correct, Λc = Λ∗.

Proof: See the Appendix.

In fact, the expected payoffs (6) and (7) have an interesting scaling property with respect

to the conjecture errors. With loss of generality, we can scale a market makers’ conjecture in

terms of the true trading intensity β∗ as βc = aβ∗, where there is no conjecture error when

a = 1. Then, it follows from (6) and (7), that the percentage reduction in the market maker’s

expected profit from a conjecture that deviates from the correct conjecture of β∗ to aβ∗ is

εM =
π∗M − πM

π∗M
= 1− 2a

a2 + 1
=

(1− a)2

1 + a2
, (8)

which does not depend on the level of expected profits. Analogously, when the informed

trader’s conjecture about pricing is scaled as Λc = bΛ∗, the percentage reduction in his

profits is

εI =
π∗I − πI
π∗I

= 1− 2

b

(
1− 1

2b

)
=

(1− b)2

b2
. (9)

Clearly, εM = εI = 0 when a = b = 1—there is no drop of expected profits in equilibrium

when the conjectues are correct.

The Kyle (1985) model can be viewed as a limiting case of Kyle (1983) as J → ∞ (in

which case β∗ → 1 and Λ∗ → 1
2
). Thus, the above result holds for the classical Kyle (1985)

model. The proposition reveals that the expected profit π̄M of a market maker and π̄I of the

informed trader both achieve their global maxima when their conjectures are correct, i.e.,

at the standard linear BNE as described by Kyle (1983). Since their expected profits are
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differentiable, it follows that the first derivatives of their expected payoffs with respect to

their conjectures are zero at equilibrium when the conjectures are correct—thus, small errors

have no impact on their profits. This property does not follow from the first-order condi-

tions, because when agents determine their optimal strategies in a BNE, their conjectures

are taken as given and are not part of the optimization. That is, agents do not optimize

with respect to their conjectures in a BNE. Therefore, it does not follow immediately that

the derivative of their expected profits with respect to their conjectures should be zero. In

fact, we will show that this is not true if the equilibrium around which the agents deviate

with different conjectures is nonlinear.

In principle, this “insensitivity” or “robustness” of payoffs with respect to small con-

jecture errors makes a case for linear equilibria in Kyle (1983), even if nonlinear equilibria

exist. In a broader context, it may also partially explain why, despite the fact that many

behavioral biases have been discovered in the lab, fewer have been identified in the market.

Intuitively, one may expect that there may be multiple equilibria, but that robust equilibria

should be more likely to survive under small perturbations caused by behavioral biases, and

these are the equilibria that are practically not affected by the biases.

When we restrict attention to linear strategies and linear conjectures, we obtain explicit

solutions for expected payoffs, regardless of the sizes of the conjecture errors. One can then

address: what is a reasonable definition of “small” conjecture errors? From (6) and (7),

it becomes clear that if the errors in conjectures are small relative to the true conjectures,

they do not affect agents’ expected payoffs. One can therefore measure conjecture errors as

fractions of the equilibrium strategies. That is, conjecture errors are small if they are small

relative to the equilibrium strategies.

We will show that, quite generally, conjecture errors are small if they are small relative to

the equilibrium strategies even when we do not require that agents only play linear strategies,

and errors in conjectures need not come from a linear family. In particular, this means that

regardless of the source of a “small deviation” from the correct conjecture—limited reason-

ing capacity, over-confidence, and so on—which can each result in distinct, small non-linear

errors, the consequences for payoffs are negligible when equilibrium strategies are linear.

2.2 Insider optimization

We consider the Nash equilibrium of Kyle (1983). When the insider observes the realization

v, conjectures that market makers adopt strategy yI (·) with a pricing rule PI (·) and trades
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the quantity x, then the insider’s expected payoff, ΠI (v, x;PI (·)), is

ΠI (v, x;PI (·)) = Eu[(v − PI (x+ u))x] (10)

= (v − P I (x))x,

where the expected price P I (x) is defined as

P I (x) = Eu[PI (x+ u)]. (11)

Define the insider’s reaction functional to her conjecture about the market maker’s strategy

yI (·) by

RI (v; yI (·)) = arg max
x

ΠI (v, x, PI (·)) . (12)

Making use of the above definitions, we obtain the following first-order condition for the

informed trader’s profit-maximization problem:

Proposition 2 The first-order condition describing the insider’s strategy is

v = P I (X (v)) +X (v)P
′
I (X (v)) , (13)

which must hold pointwise for each v.

Proof: Evaluating the first variation of the payoff (10) with respect to x, yields (13).

The insider’s first-order condition (13) has a simple economic interpretation: The marginal

value from one more share on the left-hand side is equated to the marginal cost of increasing

that position on the right-hand side.

We have the following auxiliary result:

Corollary 1 The insiders’ reaction RI (v; yI (·)) is monotonically increasing in v.

Proof: See the Appendix.

Since the reaction functional RI (· ; y (·)) is monotonic in its first argument, it is in-

vertible. Therefore, we can introduce an inverse reaction functional VI (x; y (·)) such that

VI (RI (v; y (·)) ; y (·)) ≡ v and rewrite the first-order condition for the insider, equation (13),

as

VI (x; yI (·)) = P I (x) + xP
′
I (x) (14)

=
∂

∂x

(
xP I (x)

)
,

which explicitly relates the insider’s reaction to the conjectured functional form of the ex-

pected pricing rule P I (·).
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2.3 Market maker optimization

Suppose that when market maker k conjectures that all other market makers j 6= k sub-

mit the schedule yMk
(·) that he supplies yk (·). For each realization of v and u (and,

therefore, the market clearing price P ), the total liquidity supply from market makers of

Y = yk (P ) + (J − 1)yMk
(P ) must match the total or net demand of X (v) + u. This, in

turn, determines the market-clearing price P as a function of yk:

yk (P ) + (J − 1)yMk
(P ) = X (v) + u = Y. (15)

We denote market maker k’s expected payoff given his conjectures yMk
(·) and XM,k (·) by:

ΠM,k (yk (·) , yMk
(·) , XM,k (·)) = Ev,u[yk (P ) (P − v)|yMk

(·) , XM,k (·)] (16)

= Ev,P [yk (P ) (P − v)|yMk
(·) , XM,k (·)]

= Ev,P [yk (P ) (P − Pe (P ; yMk
(·) , XM,k (·)))] ,

where Pe (P ; yMk
(·) , XM,k (·)) is an informationally-efficient price from the perspective of

market maker k:

Pe (P ; yMk
(·) , XM,k (·)) = E [v|P ; yMk

(·) , XM,k (·)] . (17)

Note that since the total demand Y = X (v)+u defines the market clearing price by the mar-

ket clearing condition (15), the informationally-efficient price (17) can be also transformed

into a function of the total order flow P̂e (Y ;XM,k (·)) = E [v|Y ;XM,k (·)], in which case there

remains only functional dependence on the insider’s conjectured strategy XM,k (·), but not

on the other market makers’ strategies. This is because the total order flow Y = X (v) + u

contains all information on the realization of the fundamental v available to the market mak-

ers. Formally, as it follows from (15), the transition from P to Y already involves the market

maker k’s conjecture yMk
(·) of the market makers’ j 6= k symmetric equilibrium strategies.

Since the expected payoff (16) has to be optimized point-by-point for each realization of

the market clearing price P , and since the market maker k submits a schedule yk (·) which

is defined for each realization of P , the optimization problem is equivalent to a point-by-

point optimization for each P . Taking into account this and the expected payoff functional

(16), we obtain a characterization of the equivalent point-by-point optimization problem,

and then derive the first-order condition describing the strategy of market maker k = 1, ..J

in a symmetric Nash equilibrium:

7



Proposition 3 1.The market maker k’s problem is equivalent to a point-by-point optimiza-

tion, for each realization of the price P , with the target functional

ΠM,k (yk, P ; yMk
(·) , XM,k (·)) = Ev[yk(P − v)] (18)

= yk(P − Pe (P ; yMk
(·) , XM,k (·))).

2.The first variation for market maker k’s problem is

0 = δykΠM,k (yk, P ; yMk
(·) , XM,k (·)) (19)

= {P − Pe (P ; yMk
(·) , XM,k (·)))} δyk + ykδP,

and the first-order condition describing her strategy is

yk (P ) = (J − 1) y′Mk
(P ) (P − Pe (P ; yMk

(·) , XM,k (·)))) . (20)

Proof: Suppose that market maker k supplies yk. Evaluating the first variation of the payoff

functional (18) with respect to yk, yields (19). Making use of the market-clearing condition

(15) and noting that total demand does not change as a result of the deviation, we obtain

δyk + (J − 1)y′Mk
(P ) δP = δY = 0, (21)

and therefore

δP = − 1

(J − 1)

δyk
y′Mk

(P )
. (22)

This means that the variation of the market-clearing price only depends on the variation of

the strategy of market maker k and the functional form of the conjectured strategy yMk
(·).

Substituting (22) into (19) yields (20).

The FOC (20) implicitly defines the reaction function of market maker k,

RMk
(P ; yMk

(·) , XM,k (·)) = (J − 1) y′Mk
(P ) (P − Pe (Y ;XM,k (·))) , (23)

to his conjectures yMk
(·) and XM,k (·) about the strategies of other agents.

We next establish that in a symmetric Bayesian Nash equilibrium, market maker strate-

gies are monotonic in price. First, suppose that this is indeed the case. Then, it follows that

the aggregate supply is invertible. That is, (20) yields:

P − 1

J − 1

yk
y′Mk

(P )
= Pe (Y ;XM,k (·)) . (24)
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Introducing the pricing rule reaction RMP (Y ;XM (·)) as an inverse of the reaction function

and using the fact that in a symmetric equilibrium, yMk
(P ) ≡ y (P ) = 1

J
Y , equation (24)

yields

RMP (Y ;XM (·))− 1

J − 1
Y R′MP (Y ;XM (·)) = Pe (Y ;XM (·)) . (25)

Define D (Y ;XM (·)) ≡ ∂
∂y
RMP (Y ;XM (·)) and De (Y ;XM (·)) ≡ ∂

∂y
Pe (Y ;XM (·)). Differ-

entiating (25) with respect to Y yields

D (Y ;XM (·))− 1

J − 2
Y D′ (Y ;XM (·)) =

J − 1

J − 2
De (Y ;XM (·)) , (26)

which has an explicit solution

D (Y ;XM (·)) = (J − 1)Y J−2

∫ +∞

Y

dξξ1−JQe (ξ;XM (·)) . (27)

We show in the Appendix that the equilibrium informationally efficient pricing rule Pe (·;XM (·))
is monotonically increasing. Therefore, De (ξ;XM (·)) ≥ 0, ξ ∈ R. Then, it follows from

(27), that D (Y ;XM (·)) ≥ 0, or equivalently ∂
∂y
RMP (Y ;XM (·)) ≥ 0.

Summarizing, we have the following result:

Corollary 2 The equilibrium market makers’ strategies y∗ (·) are monotonic, and the equi-

librium aggregate supply Y ∗ (·) is invertible.

In the competitive limit J → ∞, the second term on the left-hand side in (25) vanishes

and the price becomes informationally efficient, which means that the model reduces to Kyle

(1985). Since the equilibrium pricing rule is monotonically increasing in its first argument,

the pricing rule is steeper than the informationally efficient one for any finite number of

market makers J . Solving the ODE (25), yields

RMP (Y ;XM (·)) = (J − 1)Y J−1

∫ +∞

Y

dξξ−JPe (ξ;XM (·)) , (28)

which is an explicit characterization of the pricing rule in terms of the market makers’ con-

jecture about the insider’s strategy XM (·) for any finite number of market makers J ≥ 3.

Note that with linear strategies, Pe (Y ;XM (·)) = 1
2
Y , i.e., we reproduce the standard result

for the equilibrium pricing rule (4).

3 Nash Equilibrium

The Nash equilibrium strategies of the insider and market makers, denoted X∗ (·) and y∗ (·)
are defined by fixed-point conditions that can be expressed in terms of the reaction func-
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tionals RI (· ; yI (·)) and RM (· ; yM (·) , XM (·)) as

X∗ (·) = RI (· ; y∗ (·)) , (29)

y∗ (·) = RM (· ; y∗ (·) , X∗ (·)) .

The first condition states that in a Nash equilibrium, given the equilibrium strategy of mar-

ket makers, the informed trader chooses the trading rule that market makers believe she is

going to follow3. So, too, the optimal trading strategy of each market maker is the one that

she conjectures about the other market makers given their equilibrium beliefs about the in-

sider’s strategy. In other words, all agents’ conjectures turn out to be correct at equilibrium

and represent the optimal reactions of each agent to the strategies of the other agents.

Using (14) and (28), the conditions in (29) can be explicitly expressed in terms of the

inverse insider’s strategy V ∗ (x) and the expected pricing rule P
∗

(x;X∗ (·)) as

V ∗ (x) =
∂

∂x

(
xP
∗

(x;X∗ (·))
)
, (30)

P
∗

(x;X∗ (·)) = (J − 1)Eu

[
Y J−1

∫ +∞

Y

dξξ−JPe (ξ;X∗ (·))
]
.

In the limit J →∞, the second condition yields P
∗

(x;X∗ (·)) = Eu [Pe (Y ;X∗ (·))] and (30)

reduces to the definition of Nash equilibrium in Kyle (1985)4.

4 Robustness and Linearity

We now analyze the robustness of the Kyle (1983) model of strategic trading. To describe

the sensitivity of expected payoffs to variations in the conjectured insider’s strategy, we use

the notion of functional differentiation commonly used in functional analysis.

Definition 1 The functional differential of the functional F (x;X (·)) with respect to the

strategy X (·) is

δXF (x;X (·) , δX (·)) = lim
ε→0

{
F (x;X (·) + εδX (·))− F (x;X (·))

ε

}
, (31)

3Although our reaction-function notation emphasizes the choice of the function X (·), the condition (29)
leads to a definition of Nash equilibrium logically equivalent to that in Kyle (1983) and Kyle (1985). The
two definitions are equivalent since the informed trader’s optimization problem decomposes into separate
state-by-state optimization problems for each realization of v.

4This follows from the following representation of the Dirac’s delta function, δ (·):

lim
J→∞

(J − 1)Y J−1 (Y + z)
−J

= δ (z) .
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provided that the limit (31) exists for every δX (·) (from the same functional space), and

that it defines a functional, linear and bounded in δX (·).

The above definition corresponds to the Gateaux differential (see, e.g., Kolmogorov and

Fomin (1999)). Note that (31) can be viewed as an extension of the directional derivative of

functions depending on several variables, familiar from standard calculus, to the case when

some arguments can be functions. If the scalar variable x changes as a result of changing the

conjecture X (·), then we consider the full differential of the functional F (x;X (·)) defined as

∆XF (x;X (·) , δX (·)) =
∂

∂x
F (x;X (·)) dx+ δXF (x;X (·) , δX (·)) (32)

= dXF (x, dx;X (·)) + δXF (x;X (·) , δX (·)) .

In what follows, the scalar argument of an agent’s payoff usually corresponds to his own

trading strategy and to market variables such as price P , while the functional arguments are

the agent’s conjectures about the strategies of others. If the scalar variable x changes as a

result of changing an agent’s conjectures, one needs to use the notion of a full differential.5

We focus on a particularly demanding notion of robustness of equilibrium payoffs to small

errors that agents make in their conjectures about the strategies that other agents adopt:

Definition 2 An equilibrium is robust if and only if the full differential of an agent’s k

expected payoffs Πk (xk;Xk (·)) with respect to his or other agents’ conjectures about the

strategies of others vanishes at equilibrium:

∆Xk
Πk (xk;Xk (·)) = 0, (33)

∆Xk
Πj (xj;Xj (·)) = 0, j 6= k.

We set a demanding criterion for an equilibrium to be robust. It requires that all market

participants be indifferent to small errors in agents’ beliefs about what others will do: not

only must each market participant’s payoffs be unaffected by small errors in his or her own

beliefs, but they must also be unaffected by small errors in the beliefs that others hold.

The above definition leads to the following important observation. Since the First Order

Condition (FOC) is satisfied in the non-distorted equilibrium when all conjectures are cor-

rect, and the distortions of strategies are small for small conjecture errors, these distortions

5Since the standard notion of a differential is a particular case of the functional one, we some-
times use short hand notation, by analogy with the standard notation of the full derivative
∆XF (x;X (·) , δX (·)) = δXF (x;X (·) , δX (·)), having in mind that scalar arguments x may also be
functionals of the conjectures X (·).
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of agents’ strategies do not affect their expected payoffs in the first-order with respect to the

magnitude of the conjecture errors. Therefore, we have the following:

Corollary 3 If the equilibrium is robust, the equilibrium strategies remain optimal and still

constitute an equilibrium, neglecting the higher-order terms with respect to the conjecture

errors.

Proof: See Appendix.

4.1 Robustness

The Nash equilibrium in Kyle (1983) model is constructed as follows. Before observing the

realization of the fundamental v, the insider defines his optimal reaction RI (· ;XM (·)) to the

market makers’ conjecture XM (·) of her true trading strategy in order to maximize expected

payoffs. Simultaneously, each market maker k = 1, ..J makes a conjecture XMk
(·) ≡ XM (·),

of the true strategy X (·) and submits her schedule yk (P ; yMk
(·) , XMk

(·)) ≡ y (P ;XM (·))
which is a function of the market-clearing price and a functional of the conjecture. The pric-

ing rule is defined by inversion of y (P ;XM (·)) and can be viewed as a reaction function to

total order flow. In the competitive limit considered in Kyle (1985), market makers submit

informationally-efficient pricing rules and earn zero profits at equilibrium.

By definition, equilibrium requires that XM (·) = X∗ (·), i.e., each market maker’s conjec-

ture about the insider’s strategy is correct. Now, suppose that we found the Nash equilibrium

described above and consider a small variation in the conjecture of market maker k:

XMk
(·) = X∗ (·) + δXMk

(·) . (34)

Economically, this means that the conjecture of one market maker is “slightly off”, i.e., there

is a small deviation from the constructed Nash equilibrium. As a result of the variation of

beliefs, the trading strategy yk (P ; yMk
(·) , XMk

(·)) shifts by δyk (P ; yMk
(·) , XMk

(·)), which

leads to a shift of the market-clearing price δP according to (22). In addition, the mar-

ket maker’s estimate of the informationally efficient price also shifts, which also affects her

expected payoffs.

Since market maker k’s conjecture turns out to be wrong and the insider actually does

not deviate, the total order flow Y remains the same as in the original Nash equilibrium,

and the variation in market maker’s k supply δyk is completely absorbed by the adjustment

of aggregate supply due to the shift of the market-clearing price P . Because the FOC in the

12



original Nash equilibrium is satisfied, the effects of demand and price shifts exactly offset

each other and hence do not affect market maker k’s expected payoff. Therefore, a market

maker’s expected payoffs may only change due to the shift of the estimated informationally

efficient price in her information set.

Importantly, the expected payoffs of other market makers j 6= k, may change as a result

of shifting the market clearing price P , and this effect does not vanish due to the FOC. What

we show is that the expected payoffs of all agents (including the insider) remain the same if

and only if the original Nash equilibrium is linear.

Our main results are summarized by the following:

Theorem 1 1. The standard linear equilibrium of Kyle (1983) is robust with respect to

small conjecture errors of the market makers or the informed trader.

2. The only equilibrium of Kyle (1983) that is robust in the sense of Definition 2 is the

standard linear equilibrium.

Proof: See Appendix.

The proof proceeds in two steps. First, we prove that the equilibrium expected payoffs of

a market maker do not change as a result of a small variation of her own conjecture only if

the equilibrium in question is linear. That is, we prove that linearity is a necessary condition

for robustness, i.e., no non-linear equilibrium can be robust. We then show that the standard

linear equilibrium is indeed robust with respect to small deviations in any agent’s conjectures.

Because the Kyle (1985) model can be viewed as a limiting case of Kyle (1983) with

J → ∞, the above results apply to Kyle (1985). One may argue that the variation (53)

vanishes in the limit J → ∞ and therefore the proposed robustness condition may not be

relevant as J → ∞. However, this concern is misplaced. First, (53) is finite for any finite

J . One can view Kyle (1985) as the continuous limiting case of Kyle (1983) as J grows

infinitely large. Second, we may consider the situation in which a finite fraction q < 1 of

market makers deviates from the equilibrium conjecture with the same δXM,k (·). In this

case, all results hold with the change that the factor 1
J

in the right-hand side of the last

expression in (53) is replaced with q, which remains finite in the limit J →∞.

13



5 Conclusion

We establish a very strong sense in which the standard linear Nash equilibrium of the Kyle

(1983, 1985) model is robust. We say that a Nash equilibrium robust if the first variations of

each agent’s expected payoff with respect to small variations in their conjectures about the

strategies of others vanishes at equilibrium. We prove that each market participant is indiffer-

ent to small errors in his or her own beliefs and to small errors in the beliefs that others hold.

Further, the only robust Nash equilibrium of Kyle (1983) model is the standard linear one.

The notion of robustness that we establish is a particularly appealing one, as action spaces

are continuous, and the strategic interactions in this financial market speculation game are

especially complex, rendering it implausible that market makers fully understand the na-

ture of the trading strategy that the speculator adopts. Fortunately, we establish that the

equilibrium is unaffected when the conjectures that market makers make are slightly wrong.
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7 Appendix

Proof of Proposition 1. 1. First, it follows immediately that, when the market makers’

strategies are symmetric, the inverse market depth is

Λ = Λe

(
J − 1

J − 2

)
, (35)

where Λe is an informationally efficient market depth given by

Λe =
βc

β2
c + β2

. (36)

Define the total order flow Y = β∗v + u. Then the expected payoff for each market maker

in a symmetric linear setting is

πM = E

[
1

J
Y (Λ− Λe)Y

]
= (37)

=
1

J (J − 2)
E
[
Y 2
]

Λe = A
βc

β2
c + β2

. Q.E.D.

2. Suppose the informed trader conjectures that the market depth is Λc when the actual

depth is Λ∗. Then, as in Kyle (1983), the informed constructs his own strategy β = (2Λc)
−1

as an optimal reaction to conjectured market makers’ strategies. Then the expected payoff

of informed trader is

πI = E [βv (v − Λ∗βv)] = β (1− Λ∗β) (38)

=
1

2Λc

(
1− Λ∗

2Λc

)
=

1

2Λ∗
ξ

(
1− ξ

2

)
. Q.E.D.

Proof of Corollary 1. The insider’s payoff (10) takes the form

ΠI (v, x;Xc (·)) = x
(
v − P (x;Xc (·))

)
. (39)

Therefore for a given insider’s strategy X (·) ,

ΠI (v,X (v) ;Xc (·)) = X (v)
(
v − P (X (v) ;Xc (·))

)
. (40)

Now suppose that X (·) corresponds to the insider’s reaction functional and therefore ac-

cording to Proposition 1 it optimizes (40) for each point v. Then, for any two points v1 ≥ v2

X (v1)
(
v1 − P (X (v1) ;Xc (·))

)
≥ X (v2)

(
v1 − P (X (v2) ;Xc (·))

)
, (41)
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and

X (v2)
(
v2 − P (X (v2) ;Xc (·))

)
≥ X (v1)

(
v2 − P (X (v1) ;Xc (·))

)
. (42)

Subtracting the r.h.s. of (42) from (41) and comparing that to the difference between the

r.h.s. of (41) and the l.h.s. of (42), we obtain

X (v1) (v1 − v2) ≥ X (v2) (v1 − v2) ,

and therefore

(X (v1)−X (v2)) (v1 − v2) ≥ 0, (43)

which means that X (v1) ≥ X (v2) if v1 ≥ v2. Therefore, X (·) is monotonically increasing if

it solves the insider’s optimization problem. In particular, this is satisfied for the insider’s

reaction functional RI (· ;Y (·)) for any admissible conjecture Y (·). Q.E.D.

Proof of Corollary 2. We only need to prove that the equilibrium informationally efficient

pricing rule Pe (·;XM (·)) is monotonically increasing. The informationally efficient pricing

rule is given by

Pe (Y ;XM (·)) = Ev|Y [v] . (44)

Introduce the marginal p.d.f. ZP (Y ;X (·)) as

ZP (Y ;X (·)) ≡
∫
dv′e−

(v′)2

2 e−
(Y−X(v′))2

2 . (45)

At a symmetric equilibrium, Pe (Y ;XM,k (·)) ≡ Pe (Y ;X∗M (·)) and ZP (Y ;X (·)) ≡ ZP (Y ;X∗ (·)).
Since the optimal insider’s strategy is fixed, we use the short-hand notation Pe (Y ;X∗M (·)) =

Pe (Y ) and ZP (Y ;X∗ (·)) = ZP (Y ). We have

Pe (Y ) =

∫
dv′e−

(v′)2

2 e−
(Y−XM (v′))2

2 v′

ZP (Y )
. (46)

Differentiation with respect to Y and making use of (45) yields

P ′e (Y ) =

∫
dv′e−

(v′)2

2 e−
(Y−XM (v′))2

2 (v′ − Pe (Y )) (XM (v′)− Y )

ZP (Y )

= Covv|Y [v,XM (v)] ≥ 0,

where the last inequality follows in equilibrium from the results of Corollary 1, which says

that the equilibrium insider’s strategies are monotonically increasing. Q.E.D.
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Proof of Corollary 3. The intuitive construction of the proof is described in the main

text. Consider the full differential of the expected payoff functional for agent k. We have

∆Xk
Πk (xk;Xk (·)) = dxkΠk (xk;Xk (·)) + δXk

Πk (xk;Xk (·)) = 0, (47)

where the strategy distortion δxk occurs due to the distortion of the conjectures δXk (·). For

the small distortions δXk (·), the strategy distortions δxk are linear functionals of δXk (·),
and therefore their magnitude is first order with respect to the conjecture errors δXk (·). For

example, in case of the market makers’ problem, (20) yields

δyk (P ) = − (J − 1) y′Mk
(P ) δPe (Y ;XM,k (·)) , (48)

which is expressed as a linear functional of δXM,k (·) through δXM,k
Pe (Y ;XM,k (·)).

From the FOC, we know that dxkΠk (xk;Xk (·)) = 0, since the first variation of the ex-

pected payoffs should vanish for all possible variations of the trading strategies, including

those that occur due to the variation of conjectures, in particular given by (48) for the market

makers’ problem. Therefore, (47) reduces to

∆Xk
Πk (xk;Xk (·)) = δXk

Πk (xk;Xk (·)) = 0, (49)

which means that the small distortions of agent k strategies resulting from distortion of his

conjectures are irrelevant, and the same level of expected utility is achieved if all agents

would have followed the non-distorted equilibrium strategies xk.

Analogous, we have for j 6= k

∆Xk
Πj (xj;Xj (·)) = dxkΠj (xj;Xj (·)) + δXk

Πj (xj;Xj (·)) (50)

= dxkΠj (xj;Xj (·)) = 0,

where the second term on the r.h.s. in the first equation vanishes, since, by assumption,

the conjectures of agents j 6= k are not affected by the conjecture of agent k. However, the

strategy distortion δxj still occurs since the distortion of the conjecture δXk (·) leads to the

shift of price by distorting the strategy xk of the agent k. In this case, the scalar variation

does not automatically vanish due to FOC, since it occurs due to the price shift caused by

other agent. However, (50) says that the distortion δxj caused by the distortion of conjecture

δXk (·) does not affect payoffs of any agent j 6= k.

Therefore, if the conditions of definition 2 hold, the expected payoffs of all agents are

not affected by δXk (·), regardless whether or not they adjust their trading strategies to the
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conjecture distortion δXk (·). In particular, the same level of expected payoffs is achieved on

the strategies corresponding to the non-distorted equilibrium. Q.E.D.

Proof of Theorem 1.

1. Impact of MM k conjecture error on her own expected payoffs.

The expected profits of market maker k are given by the functional

ΠM,k (y (·) , XM,k (·)) = EY [ΠM,k (yk, P ; y (·) , XM,k (·))] (51)

= EY [yk(P − Pe (Y ;XM,k (·)))] .

Evaluating the first variation of (51) with respect to δXMk
(·), yields

δXM,k
ΠM,k (y (·) , XM,k (·)) (52)

= EY
[
δyk(P − Pe (Y ;XM,k (·))) + ykδP − ykδXM,k

Pe (Y ;XM,k (·))
]
.

Taking into account that the actual total demand does not change as a result of a wrong

conjecture and making use of the FOC (19) at equilibrium, observe that the first two terms

on the right-hand side of (52) cancel and the following ”envelope theorem” result holds:

δXM,k
ΠM,k (y (·) , XM,k (·)) = −EY

[
yδXM,k

Pe (Y ;XM,k (·))
]

(53)

= − 1

J
Eu,v

[
Y δXM,k

Pe (Y ;XM,k (·))
]
.

Therefore, the robustness condition reduces to

Eu,v
[
Y δXM,k

Pe (Y ;XM,k (·))
]

= 0. (54)

We have

Eu,v
[
Y δXM,k

Pe (Y ;XM (·))
]

(55)

= Eu,v

Y ∫ dv′e− (v′)2

2 e−
(Y−XM (v′))2

2 (v′ − Pe (Y )) (Y −XM (v′)) δXM,k (v′)

ZP (Y )


=

∫
dv

∫
dY Y δXM,k

Pe (Y ;XM (·)) .
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Changing the order of integration and making use of (45) yields

Eu,v
[
Y δXM,k

Pe (Y ;XM (·))
]

(56)

=

∫
dY ZP (Y )Y

∫
dv′e−

(v′)2

2 e−
(Y−XM (v′))2

2 (v′ − Pe (Y )) (Y −XM (v′)) δXM,k (v′)

ZP (Y )

=

∫
dve−

v2

2 δXM,k (v)

∫
dye−

(Y−XM (v))2

2 Y (v − Pe (Y )) (Y −XM (v′))

= Ev [δXM,k (v)Eu [(u+XM (v)) (v − Pe (Y )) (Y −XM (v))]]

= Ev [δXM,k (v)Eu [u (u+X (v)) (v − Pe (Y ))]] .

Now, we have

Eu [u (u+X (v)) (v − Pe (Y ))] = Eu

[
∂

∂Y
(Y (v − Pe (Y )))

]
(57)

= v − P e (X (v))−X (v)P
′
e (X (v))− P ′′e (X (v)) ,

where the last equality is obtained by integrating the noise trade out and using Stein’s

lemma. Combining the last equality of (57) with the insider’s FOC in Proposition 1 and

substituting into (56) and (53), reveals that at equilibrium

δXM,k
ΠM,k (y (·) , XM,k (·)) =

1

J
Ev

[
δXM,k (v)P

′′
e (X (v))

]
, (58)

which can be viewed as a ”double envelope theorem” result since it makes use of envelope

properties with respect to optimization by both the insider and market makers.

Taking into account that δXM,k (·) is an arbitrary variation and making use of the basic

lemma of Variation Calculus (see, e.g., Kolmogorov and Fomin (1999)), we conclude that the

functional variation in (58) vanishes if and only if P
′′
e (X (v)) = 0, ∀X (v) ∈ R, which means

that at equilibrium, the expected payoff of each market maker is insensitive with respect to

a small deviation in her own conjecture.

From the above analysis, it follows that the robustness with respect to the conjectures

by market makers is equivalent to the linearity of the pricing rule: the above condition says

that at equilibrium the market makers’ expected profit cannot vary with a small variation of

their own conjecture (34) only if the equilibrium is linear. Therefore, linearity is a necessary

condition for robustness, i.e., no equilibrium save for a linear one can be robust. We next

show that the standard linear equilibrium is indeed robust.

2. Impact of MM k conjecture error on the payoffs of other agents.
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Now, suppose that the initial equilibrium is linear, market maker k’s conjecture is slightly

“off”, and let us analyze the equilibrium expected payoffs of market makers j 6= k and the

insider. The expected payoffs of market maker j 6= k are given by

ΠM,j (y (·) , XM,k (·)) = EY [yj(P − Pe (Y ;XM,j (·)))] . (59)

Evaluating the first variation of (59) with respect to δXMk
(·) and using the fact that (3)

implies that the linear equilibrium is characterized by a linear relation between the pricing

rule and the market efficient price, P = J−1
J−2

Pe (Y ;XM (·)) we obtain

δXM,k
ΠM,j (y (·) , XM,j (·)) = EY [yjδP ]

=
1

J
EY
[
Y δXM,k

Pe (Y ;XM (·))
]

(60)

=
1

J
Ev

[
δXM,k (v)P

′′
e (X (v))

]
= 0,

which establishes that the payoffs of other market makers are insensitive with respect to a

small error in the conjecture by market maker k.

The equilibrium expected payoffs of the insider are

ΠI (X (·) , P (·)) = Ev[X (v) (v − P (X (v)))], (61)

where P (·) is the equilibrium pricing rule. If market maker k makes an incorrect conjecture,

this should affect the pricing rule and hence the insider’s expected payoffs. We have

δXM,k
ΠI (X (·) , P (·)) = −E

[
X (v) δXM,k

P (X (v))
]

(62)

= −J − 1

J − 2
Ev,u

[
X (v) δXM,k

Pe (Y ;XM (·))
]
.

Now, we have

δXM
P (y;XM (·)) = Ev′|y [(v′ − P (y;XM (·))) (y −XM (v′)) δXM (v′)] (63)

=

∫
dv′f (v′;XM (·) |y) (v′ − P (y;XM (·))) (y −XM (v′)) δXM (v′) ,

where the conditional p.d.f. f (v;XM (·) |y) is defined by

f(v;X (·) |X (v) + u = y) =
1

f (y;X (·))
exp

[
−(y −X (v))2

2Σu

]
exp

[
− v2

2Σ0

]
, (64)

the marginal distribution density function

f(y;X (·)) =

∫ +∞

−∞
dv′ exp

[
−(y −X (v′))2

2Σu

]
exp

[
−(v′)2

2Σ0

]
, (65)
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and the parameters normalized to one, Σ0 = Σu = 1. Therefore,

δXM
Ev
[
XP

]
= Ev,uX (v) δXM

P, (66)

and

δXM
P =

∫
dv′e

−
(

v′2
2

+
(y−XM (v′))2

2

)
(v′ − P (y)) (y −XM (v′)) δXM (v′)∫

dv′′e
−
(

v′′2
2

+
(y−XM (v′′))2

2

) , (67)

where we dropped the functional arguments to simplify notation. For example, P (y) is short

hand for P (y;XM (·)). Making use of (63) and changing the order of integration, yields

Ev,u [X (v) δXM
P (y;XM (·))] = Ev [δXM (v)Eu [Q (y;XM (·)) (v − P (y;XM (·))) (y −XM (v))]] ,

where

Q (y;XM (·)) = Ev|y [X (v)] =

∫
dve

−
(

v2

2
+

(y−XM (v))2

2

)
X (v)∫

dv′e
−
(

v′2
2

+
(y−XM (v′))2

2

) . (68)

In short-hand notation, we have

δXM
Ev
[
XP

]
= Ev [δXM (v)Eu [Q (y) (v − P (y)) (y −XM (v))]]

= Ev

[
δXM (v)Eu

[
∂

∂y
(Q (y) (v − P (y)))

]]
. (69)

In a linear equilibrium, Q (y) = βP (y) = λβy. Therefore, (69) yields

δXM
Ev
[
XP

]
= λβEv

[
δXM (v)Eu

[
∂

∂y
(y (v − P (y)))

]]
. (70)

From Stein’s lemma, we obtain

Eu

[
∂

∂y
(y (v − P (y)))

]
= v − P (X (v))−X (v)P

′
(X (v))− P ′′ (X (v)) = 0,

where the last equality follows from the insider’s FOC and linearity. Substituting (69) back

into (70) and then into (62), we finally obtain δXM,k
ΠI (X (·) , P (·)) = 0, which proves that

the insider’s expected equilibrium payoffs are insensitive to a small variation in a conjecture

by one of the market makers.

3. Impact of Insider’s conjecture error on her own expected payoffs.

Suppose the insider’s conjecture about some market maker’s strategy is slightly “off”.

As a result, the insider’s conjecture of the pricing rule is “off,” and the insider incor-

rectly assumes that the pricing rule P (·) deviates from the Nash equilibrium one P ∗ (·) to
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P (·) = P ∗ (·) + δP (·). The insider reacts to the conjectured pricing rule by deviating from

the original equilibrium strategy X∗ (·). From the optimization by the insider, we conclude

that the shift of insider’s demand due to the shift in the pricing rule conjecture δP (·) is

δx = ÔδP (x) =

(
−1

2

)
1

P
′
(x)

(
1 + x

∂

∂x

)
δP (x) , (71)

which means that the shift of the insider’s strategy is commensurate with the insider’s conjec-

ture error. The actual pricing rule is unaffected by the insider’s conjecture, so the “ex-post”

variation of the insider’s expected payoffs is given by

δΠI (X (·) , P (·)) (72)

= E
[
δX (v)

(
v − P (X (v))−X (v)

)
P
′
(X (v))

]
= 0,

where the last equality reflects the FOC that holds at the symmetric Nash equilibrium.

4. Impact of Insider’s conjecture error on expected payoffs of market makers.

We must evaluate the variation of the market maker’s expected equilibrium payoffs.

These expected profits shift because the insider’s optimal strategy shifts due to her conjec-

ture error, which shifts the demand for liquidity. As a result, both the aggregate liquidity

supply and market-clearing price shift, which could shift market maker expected payoffs.

Importantly, the market makers do not change the functional form of their strategies and

therefore they all supply the same amount yk = 1
J
Y and the pricing rule P (·) is the one

defined in the symmetric Nash equilibrium. We have

ΠM,k (y (·) , XM (·)) = E

[
1

J
Y (P (Y ;XM (·))− v)

]
(73)

=
1

J
Ev,u [(X (v) + u) (P (X (v) + u;XM (·))− v)] .

With the use of the Stein’s lemma, the last expression yields

ΠM,k (y (·) , XM (·)) =
1

J
Ev

[
X (v)

(
P (X (v) ;XM (·))− v

)
+ P

′
(X (v) ;XM (·))

]
, (74)

which is simply a normalized-by- 1
J

difference between the losses of liquidity traders and the

profits of informed. Since, as discussed above, the market makers’ conjecture about the in-

formed’s strategy is unaffected by the informed’s error, the functional form of the pricing rule

does not change. Therefore, we drop the functional arguments in (74). The first variation

of expected market maker’s profits takes the form

δΠM,k (y (·)) =
1

J
Ev

[
δX (v)

((
P (X (v)) +X (v)P

′
(X (v))− v

)
+ P

′′
(X (v))

)]
. (75)
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Note that the first three terms on the right-hand side of (75) cancel due to the FOC of the

insider’s problem, and we finally obtain an envelope theorem result

δΠM,k (y (·)) =
1

J
Ev

[
δX (v)P

′′
(X (v))

]
. (76)

Analogous to the first part of the proof, we argue that since δX (·) is an arbitrary variation

(defined in an appropriate functional space), the basic lemma of Variation Calculus states

that the variation (76) vanishes if and only if P
′′

(X (v)) = 0, ∀X (v) ∈ R. In particular, this

means that in a linear equilibrium, the expected payoff of each market maker is insensitive

to a small error in the insider’s conjecture. Q.E.D.
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