15 research outputs found

    INSIG2 promoter variant, obesity markers and lipid parameters - no association in a large Slavonic Caucasian population sample.

    No full text
    Heritability studies have estimated the genetically attributable part of body mass index variance to be in the range of 30-70 %. Rs7566650 (G>C) single-nucleotide polymorphism (SNP) near the promoter of the INSIG2 gene has been identified as associated with body mass index. The gene product of INSIG2 is involved in regulation of fatty acid and cholesterol synthesis. In order to replicate this association we have analysed 2,559 unrelated individuals of Slavonic Caucasian origin from the populationbased Czech MONICA 3-year cohort. Body mass index, waist-hip ratio and plasma lipids (total-cholesterol, HDL-cholesterol, triglycerides) were measured at two independent examinations within three years. We could not detect any association between the SNP rs7566605 and body mass index, waist-hip ratio or lipid parameters, both with or without adjusting for age and gender. Neither the body mass index change nor lipid changes were significantly affected by the INSIG2 gene variant. Our results indicated that this INSIG2 polymorphism has no significant effect on body mass index and plasma lipids in the Czech Slavonic population

    Supplementary Material for: Mutated Huntingtin Causes Testicular Pathology in Transgenic Minipig Boars

    No full text
    <strong><em>Background:</em></strong> Huntington's disease is induced by CAG expansion in a single gene coding the huntingtin protein. The mutated huntingtin (mtHtt) primarily causes degeneration of neurons in the brain, but it also affects peripheral tissues, including testes. <b><i>Objective:</i></b> We studied sperm and testes of transgenic boars expressing the N-terminal region of human mtHtt. <b><i>Methods:</i></b> In this study, measures of reproductive parameters and electron microscopy (EM) images of spermatozoa and testes of transgenic (TgHD) and wild-type (WT) boars of F1 (24-48 months old) and F2 (12-36 months old) generations were compared. In addition, immunofluorescence, immunohistochemistry, Western blot, hormonal analysis and whole-genome sequencing were done in order to elucidate the effects of mtHtt. <b><i>Results:</i></b> Evidence for fertility failure of both TgHD generations was observed at the age of 13 months. Reproductive parameters declined and progressively worsened with age. EM revealed numerous pathological features in sperm tails and in testicular epithelium from 24- and 36-month-old TgHD boars. Moreover, immunohistochemistry confirmed significantly lower proliferation activity of spermatogonia in transgenic testes. mtHtt was highly expressed in spermatozoa and testes of TgHD boars and localized in all cells of seminiferous tubules. Levels of fertility-related hormones did not differ in TgHD and WT siblings. Genome analysis confirmed that insertion of the lentiviral construct did not interrupt any coding sequence in the pig genome. <b><i>Conclusions:</i></b> The sperm and testicular degeneration of TgHD boars is caused by gain-of-function of the highly expressed mtHtt
    corecore