1,011 research outputs found
Carbon dioxide emissions of Antarctic tourism
The increase of tourism to the Antarctic continent may entail not only local but also global environmental impacts. These latter impacts, which are mainly caused by transport, have been generally ignored. As a result, there is a lack of data on the global impacts of Antarctic tourism in terms of energy consumption and carbon dioxide emissions. This paper presents and applies a methodology for quantifying CO2 emissions, both for the Antarctic vessel fleet as a whole and per passenger (both per trip and per day). The results indicate that the average tourist trip to Antarctica results in 5.44 t of CO2 emissions per passenger, or 0.49 t per passenger and day. Approximately 70% of these emissions are attributable to cruising and 30% to flying, which highlights the global environmental relevance of local transport for this type of touris
Ionic conductivity of nanocrystalline yttria-stabilized zirconia: Grain boundary and size effects
9 páginas, 6 figuras, 3 tablas.-- PACS number(s): 66.30.H-.-- et al.We report on the effect of grain size on the ionic conductivity of yttria-stabilized zirconia samples synthesized by ball milling. Complex impedance measurements, as a function of temperature and frequency are performed on 10 mol % yttria-stabilized zirconia nanocrystalline samples with grain sizes ranging from 900 to 17 nm. Bulk ionic conductivity decreases dramatically for grain sizes below 100 nm, although its activation energy is essentially independent of grain size. The results are interpreted in terms of a space-charge layer resulting from segregation of mobile oxygen vacancies to the grain-boundary core. The thickness of this space-charge layer formed at the grain boundaries is on the order of 1 nm for large micron-sized grains but extends up to 7 nm when decreasing the grain size down to 17 nm. This gives rise to oxygen vacancies depletion over a large volume fraction of the grain and consequently to a significant decrease in oxide-ion conductivity.We acknowledge financial support by Junta de Comunidades de Castilla-La Mancha through Project No. PAI-05-013, by CAM under Grant No. S2009/MAT-1756 (Phama), by Spanish MICINN through Grants No. MAT2008-06517-C02, No. MAT2008-06542-C04, and No. FIS2009-12964-
C05-04, and Consolider Ingenio 2010 under Grant No. CSD2009-00013 (Imagine).Peer reviewe
Simulation of gauge transformations on systems of ultracold atoms
We show that gauge transformations can be simulated on systems of ultracold
atoms. We discuss observables that are invariant under these gauge
transformations and compute them using a tensor network ansatz that escapes the
phase problem. We determine that the Mott-insulator-to-superfluid critical
point is monotonically shifted as the induced magnetic flux increases. This
result is stable against the inclusion of a small amount of entanglement in the
variational ansatz.Comment: 14 pages, 6 figure
X-ray magnetic circular dichroism measurements using an X-ray phase retarder on the BM25 A-SpLine beamline at the ESRF
6 páginas, 8 figuras.Circularly polarized X-rays produced by a diamond X-ray phase retarder of thickness 0.5 mm in the Laue transmission configuration have been used for recording X-ray magnetic circular dichroism (XMCD) on the bending-magnet beamline BM25A (SpLine) at the ESRF. Field reversal and helicity reversal techniques have been used to carry out the measurements. The performance of the experimental set-up has been demonstrated by recording XMCD in the energy range from 7 to 11 keV.This work was partially supported by a Spanish CICYTMAT2008-
06542-C04 grant. MALM and RB acknowledge the
Ministerio de Ciencia e Innovación of Spain for their Postdoctoral
and PhD grants, respectively. We also acknowledge
the Spanish Ministerio de Ciencia e Innovación and Consejo
Superior de Investigaciones Científicas for financial support.Peer reviewe
The Role of Bulge Formation in the Homogenization of Stellar Populations at as revealed by Internal Color Dispersion in CANDELS
We use data from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy
Survey to study how the spatial variation in the stellar populations of
galaxies relate to the formation of galaxies at . We use the
Internal Color Dispersion (ICD), measured between the rest-frame UV and optical
bands, which is sensitive to age (and dust attenuation) variations in stellar
populations. The ICD shows a relation with the stellar masses and morphologies
of the galaxies. Galaxies with the largest variation in their stellar
populations as evidenced by high ICD have disk-dominated morphologies (with
S\'{e}rsic indexes ) and stellar masses between . There is a marked decrease in the ICD as the stellar mass and/or
the S\'ersic index increases. By studying the relations between the ICD and
other galaxy properties including sizes, total colors, star-formation rate, and
dust attenuation, we conclude that the largest variations in stellar
populations occur in galaxies where the light from newly, high star-forming
clumps contrasts older stellar disk populations. This phase reaches a peak for
galaxies only with a specific stellar mass range, , and prior to the formation of a substantial bulge/spheroid. In contrast,
galaxies at higher or lower stellar masses, and/or higher S\'{e}rsic index () show reduced ICD values, implying a greater homogeneity of their stellar
populations. This indicates that if a galaxy is to have both a quiescent bulge
along with a star forming disk, typical of Hubble Sequence galaxies, this is
most common for stellar masses and when the
bulge component remains relatively small ().Comment: 15 pages, 14 figure
XANES and EXAFS study of the local order in nanocrystalline yttria-stabilized zirconia
The local order around Zr and Y atoms of nanocrystalline yttria-stabilized zirconia (YSZ) powders with
different grain sizes has been investigated by x-ray absorption spectroscopies. The samples were prepared by
means of mechanical alloying with or without subsequent sintering treatment and also by milling commercial
YSZ. Our study is motivated by the interest in the electrical properties of grain boundaries and the controversy about the level of disorder in the intergrain regions in nanocrystalline YSZ. The x-ray absorption near edge
structure (XANES) analysis indicates that the local order of all the sintered samples is independent of the grain
size. This is confirmed by the analysis of the extended x-ray absorption fine structure, which points out also that,
in contrast to that found in sintered samples, the local order around the cation in the samples milled without
further sintering treatment extends only to the first coordination shell. Finally, the results of ab initio Zr K-edge XANES calculations lead us to conclude that the observed changes of the shape of the white line are not related to a phase transformation but reflects the short-range order present in the as-milled samples
Optical lattice quantum simulator for QED in strong external fields: spontaneous pair creation and the Sauter-Schwinger effect
Spontaneous creation of electron-positron pairs out of the vacuum due to a
strong electric field is a spectacular manifestation of the relativistic
energy-momentum relation for the Dirac fermions. This fundamental prediction of
Quantum Electrodynamics (QED) has not yet been confirmed experimentally as the
generation of a sufficiently strong electric field extending over a large
enough space-time volume still presents a challenge. Surprisingly, distant
areas of physics may help us to circumvent this difficulty. In condensed matter
and solid state physics (areas commonly considered as low energy physics), one
usually deals with quasi-particles instead of real electrons and positrons.
Since their mass gap can often be freely tuned, it is much easier to create
these light quasi-particles by an analogue of the Sauter-Schwinger effect. This
motivates our proposal of a quantum simulator in which excitations of
ultra-cold atoms moving in a bichromatic optical lattice represent particles
and antiparticles (holes) satisfying a discretized version of the Dirac
equation together with fermionic anti-commutation relations. Using the language
of second quantization, we are able to construct an analogue of the spontaneous
pair creation which can be realized in an (almost) table-top experiment.Comment: 21 pages, 10 figure
- …
