23,942 research outputs found
Current Physics Results from Staggered Chiral Perturbation Theory
We review several results that have been obtained using lattice QCD with the
staggered quark formulation. Our focus is on the quantities that have been
calculated numerically with low statistical errors and have been extrapolated
to the physical quark mass limit and continuum limit using staggered chiral
perturbation theory. We limit our discussion to a brief introduction to
staggered quarks, and applications of staggered chiral perturbation theory to
the pion mass, decay constant, and heavy-light meson decay constants.Comment: 18 pages, 4 figures, commissioned review article, to appear in Mod.
Phys. Lett.
The Stellar Content of Obscured Galactic Giant H II Regions: II. W42
We present near infrared J, H, and K images and K-band spectroscopy in the
giant HII region W42. A massive star cluster is revealed; the color-color plot
and K-band spectroscopic morphology of two of the brighter objects suggest the
presence of young stellar objects. The spectrum of the bright central star is
similar to unobscured stars with MK spectral types of O5-O6.5. If this star is
on the zero age main sequence, then the derived spectrophotometric distance is
considerably smaller than previous estimates. The Lyman continuum luminosity of
the cluster is a few times that of the Trapezium. The slope of the K-band
luminosity function is similar to that for the Trapezium cluster and
significantly steeper than that for the massive star cluster in M17 or the
Arches cluster near the Galactic center.Comment: 30 pages, 11 figures, late
Continuous measurement of shock velocity using a microwave technique
Microwave technique for continuous measurement of shock wave velocit
Computational Performance Evaluation of Two Integer Linear Programming Models for the Minimum Common String Partition Problem
In the minimum common string partition (MCSP) problem two related input
strings are given. "Related" refers to the property that both strings consist
of the same set of letters appearing the same number of times in each of the
two strings. The MCSP seeks a minimum cardinality partitioning of one string
into non-overlapping substrings that is also a valid partitioning for the
second string. This problem has applications in bioinformatics e.g. in
analyzing related DNA or protein sequences. For strings with lengths less than
about 1000 letters, a previously published integer linear programming (ILP)
formulation yields, when solved with a state-of-the-art solver such as CPLEX,
satisfactory results. In this work, we propose a new, alternative ILP model
that is compared to the former one. While a polyhedral study shows the linear
programming relaxations of the two models to be equally strong, a comprehensive
experimental comparison using real-world as well as artificially created
benchmark instances indicates substantial computational advantages of the new
formulation.Comment: arXiv admin note: text overlap with arXiv:1405.5646 This paper
version replaces the one submitted on January 10, 2015, due to detected error
in the calculation of the variables involved in the ILP model
Analysis of pressurized and axially loaded orthotropic multicell tanks
Nondimensional stress resultants and displacements for multicell tanks of orthotropic construction loaded by internal pressure and axial compressio
Low-velocity collision behaviour of clusters composed of sub-mm sized dust aggregates
The experiments presented aim to measure the outcome of collisions between
sub-mm sized protoplanetary dust aggregate analogues. We also observed the
clusters formed from these aggregates and their collision behaviour. The
experiments were performed at the drop tower in Bremen. The protoplanetary dust
analogue materials were micrometre-sized monodisperse and polydisperse SiO
particles prepared into aggregates with sizes between 120~m and
250~m. One of the dust samples contained aggregates that were previously
compacted through repeated bouncing. During three flights of 9~s of
microgravity each, individual collisions between aggregates and the formation
of clusters of up to a few millimetres in size were observed. In addition, the
collisions of clusters with the experiment cell walls leading to compaction or
fragmentation were recorded. We observed collisions amongst dust aggregates and
collisions between dust clusters and the cell aluminium walls at speeds ranging
from about 0.1 cm/s to 20 cm/s. The velocities at which sticking occurred
ranged from 0.18 to 5.0 cm/s for aggregates composed of monodisperse dust, with
an average value of 2.1 cm/s for reduced masses ranging from 1.2x10-6 to
1.8x10-3 g with an average value of 2.2x10-4 g. From the restructuring and
fragmentation of clusters composed of dust aggregates colliding with the
aluminium cell walls, we derived a collision recipe for dust aggregates
(100 m) following the model of Dominik \& Thielens (1997) developed
for microscopic particles. We measured a critical rolling energy of 1.8x10-13 J
and a critical breaking energy of 3.5x10-13 J for 100 m-sized
non-compacted aggregates.Comment: 12 pages, 13 figure
A near-infrared survey for Galactic Wolf-Rayet stars
Initial results, techniques, and rationale for a near-infrared survey of
evolved emission-line stars toward the Galactic Center are presented. We use
images taken through narrow-band emission-line and continuum filters to select
candidates for spectroscopic follow-up. The filters are optimized for the
detection of Wolf-Rayet stars and other objects which exhibit emission-lines in
the 2 micron region. Approximately three square degrees along the Galactic
plane have been analyzed in seven narrow-filters (four emission-lines and three
continuum). Four new Wolf-Rayet stars have been found which are the subject of
a following paper.Comment: 10 pages, 2 figures, accepted for publication in A&
How well do domain wall fermions realize chiral symmetry?
In the domain wall fermion formulation, chiral symmetry breaking in full QCD
is expected to fall exponentially with the length of the extra dimension. We
measure the chiral symmetry breaking due to a finite extra dimension in two
ways, which can be affected differently by finite volume and explicit fermion
mass. For quenched QCD the two methods generally agree, except for the largest
extent of the extra dimension, which makes the limit uncertain. We have less
data for full QCD, but see exponential suppression for the method where we have
data.Comment: 3 pages, 2 figures, LATTICE99(hightemp
- …
