23,942 research outputs found

    Current Physics Results from Staggered Chiral Perturbation Theory

    Get PDF
    We review several results that have been obtained using lattice QCD with the staggered quark formulation. Our focus is on the quantities that have been calculated numerically with low statistical errors and have been extrapolated to the physical quark mass limit and continuum limit using staggered chiral perturbation theory. We limit our discussion to a brief introduction to staggered quarks, and applications of staggered chiral perturbation theory to the pion mass, decay constant, and heavy-light meson decay constants.Comment: 18 pages, 4 figures, commissioned review article, to appear in Mod. Phys. Lett.

    The Stellar Content of Obscured Galactic Giant H II Regions: II. W42

    Get PDF
    We present near infrared J, H, and K images and K-band spectroscopy in the giant HII region W42. A massive star cluster is revealed; the color-color plot and K-band spectroscopic morphology of two of the brighter objects suggest the presence of young stellar objects. The spectrum of the bright central star is similar to unobscured stars with MK spectral types of O5-O6.5. If this star is on the zero age main sequence, then the derived spectrophotometric distance is considerably smaller than previous estimates. The Lyman continuum luminosity of the cluster is a few times that of the Trapezium. The slope of the K-band luminosity function is similar to that for the Trapezium cluster and significantly steeper than that for the massive star cluster in M17 or the Arches cluster near the Galactic center.Comment: 30 pages, 11 figures, late

    Continuous measurement of shock velocity using a microwave technique

    Get PDF
    Microwave technique for continuous measurement of shock wave velocit

    Computational Performance Evaluation of Two Integer Linear Programming Models for the Minimum Common String Partition Problem

    Full text link
    In the minimum common string partition (MCSP) problem two related input strings are given. "Related" refers to the property that both strings consist of the same set of letters appearing the same number of times in each of the two strings. The MCSP seeks a minimum cardinality partitioning of one string into non-overlapping substrings that is also a valid partitioning for the second string. This problem has applications in bioinformatics e.g. in analyzing related DNA or protein sequences. For strings with lengths less than about 1000 letters, a previously published integer linear programming (ILP) formulation yields, when solved with a state-of-the-art solver such as CPLEX, satisfactory results. In this work, we propose a new, alternative ILP model that is compared to the former one. While a polyhedral study shows the linear programming relaxations of the two models to be equally strong, a comprehensive experimental comparison using real-world as well as artificially created benchmark instances indicates substantial computational advantages of the new formulation.Comment: arXiv admin note: text overlap with arXiv:1405.5646 This paper version replaces the one submitted on January 10, 2015, due to detected error in the calculation of the variables involved in the ILP model

    Analysis of pressurized and axially loaded orthotropic multicell tanks

    Get PDF
    Nondimensional stress resultants and displacements for multicell tanks of orthotropic construction loaded by internal pressure and axial compressio

    Low-velocity collision behaviour of clusters composed of sub-mm sized dust aggregates

    Full text link
    The experiments presented aim to measure the outcome of collisions between sub-mm sized protoplanetary dust aggregate analogues. We also observed the clusters formed from these aggregates and their collision behaviour. The experiments were performed at the drop tower in Bremen. The protoplanetary dust analogue materials were micrometre-sized monodisperse and polydisperse SiO2_2 particles prepared into aggregates with sizes between 120~μ\mum and 250~μ\mum. One of the dust samples contained aggregates that were previously compacted through repeated bouncing. During three flights of 9~s of microgravity each, individual collisions between aggregates and the formation of clusters of up to a few millimetres in size were observed. In addition, the collisions of clusters with the experiment cell walls leading to compaction or fragmentation were recorded. We observed collisions amongst dust aggregates and collisions between dust clusters and the cell aluminium walls at speeds ranging from about 0.1 cm/s to 20 cm/s. The velocities at which sticking occurred ranged from 0.18 to 5.0 cm/s for aggregates composed of monodisperse dust, with an average value of 2.1 cm/s for reduced masses ranging from 1.2x10-6 to 1.8x10-3 g with an average value of 2.2x10-4 g. From the restructuring and fragmentation of clusters composed of dust aggregates colliding with the aluminium cell walls, we derived a collision recipe for dust aggregates (\sim100 μ\mum) following the model of Dominik \& Thielens (1997) developed for microscopic particles. We measured a critical rolling energy of 1.8x10-13 J and a critical breaking energy of 3.5x10-13 J for 100 μ\mum-sized non-compacted aggregates.Comment: 12 pages, 13 figure

    A near-infrared survey for Galactic Wolf-Rayet stars

    Full text link
    Initial results, techniques, and rationale for a near-infrared survey of evolved emission-line stars toward the Galactic Center are presented. We use images taken through narrow-band emission-line and continuum filters to select candidates for spectroscopic follow-up. The filters are optimized for the detection of Wolf-Rayet stars and other objects which exhibit emission-lines in the 2 micron region. Approximately three square degrees along the Galactic plane have been analyzed in seven narrow-filters (four emission-lines and three continuum). Four new Wolf-Rayet stars have been found which are the subject of a following paper.Comment: 10 pages, 2 figures, accepted for publication in A&

    How well do domain wall fermions realize chiral symmetry?

    Get PDF
    In the domain wall fermion formulation, chiral symmetry breaking in full QCD is expected to fall exponentially with the length of the extra dimension. We measure the chiral symmetry breaking due to a finite extra dimension in two ways, which can be affected differently by finite volume and explicit fermion mass. For quenched QCD the two methods generally agree, except for the largest extent of the extra dimension, which makes the limit uncertain. We have less data for full QCD, but see exponential suppression for the method where we have data.Comment: 3 pages, 2 figures, LATTICE99(hightemp
    corecore