595 research outputs found

    Genetic study of gestation length in andalusian and arabian mares

    Get PDF
    The length of gestation in Andalusian, or Spanish Purebred (SPB) and Arabian (AB) mares reared in Spain was analysed, based on 766 spontaneous full-term deliveries appertaining to 141 mares of SPB breed and 72 mares of AB breed in 31 breeding seasons. The data were obtained from the Yeguada Militar de Jerez de la Frontera stud farm in Cadiz, Spain. The mean length of gestation was of 336.8 ´ ± 0.48 days in the SPB mares and 340.3 ± 0.63 days in AB mares. To assess the accurate prediction of time of birth the potential effect of a number of factors was investigated. The influences of the breed, mare, month and year of mating, age of the mother, number of births and sex of the foal were statistically significant. The factor have the greatest influence over the gestation length was the mare itself, with a correlation among consecutive births of around 0.4. The effect of inbreeding, both of the mare and foal, was negligible. Gestation length shortened as the breeding season progressed: in both breeds, a delay of 1 month in mating corresponded to a decrease of 3 days in the gestation length. According to our results, gestation length decrease as the mare gets older, with the shortest gestation periods when the mare is 10–12 years old, and from this point on, it slowly increases. The gestation period shortens as the 4th or 5th birth approaches, and then gets progressively longer. The range of variation in gestation length due to the number of births to the mare is of 2.9 days for the AB mares, and 2.2 days for SPB mares. The heritability for the gestation length for AB and the SPB breeds was 0.2, with a repeatability of 0.36 and 0.37, for SPB and AB breeds, respectively. With the data from both breeds, and using a classical approach, the response to selection was estimated if mares with extreme gestation lengths were culled, i.e. lengths which are under 310 days, or over 360 days. According to our results, in the case of SPB, a decrease of 14–45% would occur in the number of extreme gestation lengths, while in the AB breed, this value would decrease from 2 to 39%

    Exome sequencing in a consanguineous family clinically diagnosed with early-onset Alzheimer's disease identifies a homozygous CTSF mutation

    Get PDF
    We have previously reported the whole genome genotyping analysis of 2 consanguineous siblings clinically diagnosed with early onset Alzheimer's disease (AD). In this analysis, we identified several large regions of homozygosity shared between both affected siblings, which we suggested could be candidate loci for a recessive genetic lesion underlying the early onset AD in these cases. We have now performed exome sequencing in one of these siblings and identified the potential cause of disease: the CTSF c.1243G>A:p.Gly415Arg mutation in homozygosity. Biallelic mutations in this gene have been shown to cause Type B Kufs disease, an adult-onset neuronal ceroid lipofuscinosis with some cases resembling the impairment seen in AD

    Iminium Salts of ω-Dithiafulvenylpolyenals: An Easy Entry to the Corresponding Aldehydes and Doubly Proaromatic Nonlinear Optic-phores

    Get PDF
    A short, high-yielding route to ω-dithiafulvenylpolyenals (1) via the corresponding iminium salts (2) and starting from trimethyl-1,3-dithiolium tetrafluoroborate is reported. The Knoevenagel reactions of either 1 or 2 with isoxazolone-containing acceptors afford merocyanines 7 and 9, in a process that is often accompanied by a vinylene-shortening side reaction. Experimental and theoretical studies reveal that compounds 7 and 9, featuring two proaromatic end groups, are strongly polarized and show good second-order nonlinear optical responses

    Genetic screening of Alzheimer's disease genes in Iberian and African samples yields novel mutations in presenilins and APP

    Get PDF
    Mutations in three genes (PSEN1, PSEN2, and APP) have been identified in patients with early-onset (<65 years) Alzheimer's disease (AD). We performed a screening for mutations in the coding regions of presenilins, as well as exons 16 and 17 of the APP gene in a total of 231 patients from the Iberian peninsular with a clinical diagnosis of early-onset AD (mean age at onset of 52.9 years; range 31-64). We found three novel mutations in PSEN1, one novel mutation in PSEN2, and a novel mutation in the APP gene. Four previously described mutations in PSEN1 were also found. The same analysis was carried in 121 elderly healthy controls from the Iberian peninsular, and a set of 130 individuals from seven African populations belonging to the Centre d'Etude du Polymorphisme Humain-Human Genome Diversity Panel (CEPH-HGDP), in order to determine the extent of normal variability in these genes. Interestingly, in the latter series, we found five new non-synonymous changes in all three genes and a presenilin 2 variant (R62H) that has been previously related to AD. In some of these mutations, the pathologic consequence is uncertain and needs further investigation. To address this question we propose and use a systematic algorithm to classify the putative pathology of AD mutations

    Exercise effects on erythrocyte deformability in exercise-induced arterial hypoxemia

    Get PDF
    Exercise-induced arterial hypoxemia (EIAH) is often found in endurance-trained subjects at high exercise intensity. The role of erythrocyte deformability (ED) in EIAH has been scarcely explored. We aimed to explore the role of erythrocyte properties and lactate accumulation in the response of ED in EIAH. ED was determined in 10 sedentary and in 16 trained subjects, both before and after a maximal incremental test, and after recovery, along with mean corpuscular volume (MCV) and red blood cell lactate concentrations. EIAH was found in 6 trained subjects ( 06SaO2=-8.25\ub14.03%). Sedentary and non-EIAH trained subjects showed reduced ED after exercise, while no effect on ED was found in EIAH trained subjects. After exercise, lactate concentrations rose and MCV increased equally in all groups. ED is strongly driven by cell volume, but the different ED response to exercise in EIAH shows that other cellular mechanisms may be implicated. Interactions between membrane and cytoskeleton, which have been found to be O2-regulated, play a role in ED. The drop in SaO2 in EIAH subjects can improve ED response to exercise. This can be an adaptive mechanism that enhances muscular and pulmonary perfusion, and allows the achievement of high exercise intensity in EIAH despite lower O2 arterial transport

    Systemic Exosomal Delivery of shRNA Minicircles Prevents Parkinsonian Pathology

    Get PDF
    The development of new therapies to slow down or halt the progression of Parkinson's disease is a health care priority. A key pathological feature is the presence of alpha-synuclein aggregates, and there is increasing evidence that alpha-synuclein propagation plays a central role in disease progression. Consequently, the downregulation of alpha-synuclein is a potential therapeutic target. As a chronic disease, the ideal treatment will be minimally invasive and effective in the long-term. Knockdown of gene expression has clear potential, and siRNAs specific to alpha-synuclein have been designed; however, the efficacy of siRNA treatment is limited by its short-term efficacy. To combat this, we designed shRNA minicircles (shRNA-MCs), with the potential for prolonged effectiveness, and used RVG-exosomes as the vehicle for specific delivery into the brain. We optimized this system using transgenic mice expressing GFP and demonstrated its ability to downregulate GFP protein expression in the brain for up to 6 weeks. RVG-exosomes were used to deliver anti-alpha-synuclein shRNA-MC therapy to the alpha-synuclein preformed-fibril-induced model of parkinsonism. This therapy decreased alpha-synuclein aggregation, reduced the loss of dopaminergic neurons, and improved the clinical symptoms. Our results confirm the therapeutic potential of shRNA-MCs delivered by RVG-exosomes for long-term treatment of neurodegenerative diseases

    The second flight of the SUNRISE balloon-borne solar observatory: overview of instrument updates, the flight, the data and first results

    Full text link
    The SUNRISE balloon-borne solar observatory, consisting of a 1~m aperture telescope that provided a stabilized image to a UV filter imager and an imaging vector polarimeter, carried out its second science flight in June 2013. It provided observations of parts of active regions at high spatial resolution, including the first high-resolution images in the Mg~{\sc ii}~k line. The obtained data are of very high quality, with the best UV images reaching the diffraction limit of the telescope at 3000~\AA\ after Multi-Frame Blind Deconvolution reconstruction accounting for phase-diversity information. Here a brief update is given of the instruments and the data reduction techniques, which includes an inversion of the polarimetric data. Mainly those aspects that evolved compared with the first flight are described. A tabular overview of the observations is given. In addition, an example time series of a part of the emerging active region NOAA AR~11768 observed relatively close to disk centre is described and discussed in some detail. The observations cover the pores in the trailing polarity of the active region, as well as the polarity inversion line where flux emergence was ongoing and a small flare-like brightening occurred in the course of the time series. The pores are found to contain magnetic field strengths ranging up to 2500~G and, while large pores are clearly darker and cooler than the quiet Sun in all layers of the photosphere, the temperature and brightness of small pores approach or even exceed those of the quiet Sun in the upper photosphere.Comment: Accepted for publication in The Astrophysical Journa
    corecore