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a b s t r a c t 

Preterm birth is closely associated with diffuse white matter dysmaturation inferred from diffusion MRI and 
neurocognitive impairment in childhood. Diffusion tensor imaging (DTI) and neurite orientation dispersion and 
density imaging (NODDI) are distinct dMRI modalities, yet metrics derived from these two methods share vari- 
ance across tracts. This raises the hypothesis that dimensionality reduction approaches may provide efficient 
whole-brain estimates of white matter microstructure that capture (dys)maturational processes. To investigate 
the optimal model for accurate classification of generalised white matter dysmaturation in preterm infants we 
assessed variation in DTI and NODDI metrics across 16 major white matter tracts using principal component 
analysis and structural equation modelling, in 79 term and 141 preterm infants at term equivalent age. We used 
logistic regression models to evaluate performances of single-metric and multimodality general factor frameworks 
for efficient classification of preterm infants based on variation in white matter microstructure. Single-metric gen- 
eral factors from DTI and NODDI capture substantial shared variance (41.8-72.5%) across 16 white matter tracts, 
and two multimodality factors captured 93.9% of variance shared between DTI and NODDI metrics themselves. 
General factors associate with preterm birth and a single model that includes all seven DTI and NODDI metrics 
provides the most accurate prediction of microstructural variations associated with preterm birth. This suggests 
that despite global covariance of dMRI metrics in neonates, each metric represents information about specific 
(and additive) aspects of the underlying microstructure that differ in preterm compared to term subjects. 
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. Introduction 

Diffusion tensor imaging (DTI) and neurite orientation dispersion
nd density imaging (NODDI) enable inference about the microstruc-
ural properties (such as water content, axonal density and myelina-
ion) of developing white matter from diffusion magnetic resonance
maging (dMRI) ( Counsell et al., 2019 ; Tariq et al., 2016 ; Zhang et al.,
Abbreviations: AD, axial diffusivity; AF, arcuate fasciculus; AIC, Akaike Informatio
ion; CC genu, corpus callosum genu/forceps minor; CC splenium, corpus callosum spl
nalysis; CFI, comparative fit index; CST, corticospinal tract; dMRI, diffusion MRI; DT
OD, fibre orientation distribution; GA, gestational age; IFOF, inferior fronto-occipita
D, mean diffusivity; NDI, neurite density index; NODDI, neurite orientation dispe

omponent analysis; RD, radial diffusivity; RMSEA, root mean square error of approxi
DI, track density image; TLI, Tucker-Lewis index; UNC, uncinate fasciculus. 
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012 ). Neonatal dMRI has been valuable in assessing the impact of
reterm birth on the developing brain; it reveals a preterm brain pheno-
ype at term-equivalent age which includes lower fractional anisotropy
FA) and neurite density index (NDI) and increased mean diffusivity
MD) throughout the white matter compared to term-born controls,
ith a dose-dependent effect of prematurity ( Alexandrou et al., 2014 ;
n Criterion; ATR, anterior thalamic radiation; BIC, Bayesian Information Crite- 
enium/forceps major; CCG, cingulum cingulate gyrus; CFA, confirmatory factor 
I, diffusion tensor imaging; FA, fractional anisotropy; FDR, false discovery rate; 
l fasciculus; ILF, inferior longitudinal fasciculus; ISO, isotropic volume fraction; 
rsion and density imaging; ODI, orientation dispersion index; PCA, principal 
mation; ROI, region of interest; SRMR, standardised root mean square residual. 
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njari et al., 2007 ; Barnett et al., 2018 ; Batalle et al., 2017 ; Blesa et al.,
020 ; Boardman and Counsell, 2020 ; Hüppi et al., 1998 ; Partridge et al.,
004 ; Pogribna et al., 2013 ). Importantly, the dysconnectivity and re-
uced white matter integrity associated with preterm birth is substan-
ially a whole brain phenomenon ( Girault et al., 2019 ; Telford et al.,
017 ). This motivates the search for efficient whole-brain estimates that
ould capture maturational processes in early life. 

Studies have demonstrated that dMRI measures of white matter
racts across the brain are correlated (e.g. an individual with high
A in one tract is likely to have high FA across other tracts) and
hat this relationship is exists across the life course ( Cox et al., 2016 ;
irault et al., 2019 ; Lee et al., 2017 ; Mishra et al., 2013 ; Telford et al.,
017 ; Wahl et al., 2010 ). This property has allowed the derivation of
eneral factors (g-factors) of white matter microstructure (e.g. gFA),
hich associate with general cognitive functioning ( Alloza et al., 2016 ;
ox et al., 2019 ; Penke et al., 2010 ) and age ( Cox et al., 2016 ). Similar
iffusion properties have been observed in early life and these predict
ognitive abilities ( Lee et al., 2017 ). Our group has previously reported
hat in neonates DTI-metric-based g-factors explain around 50% of vari-
nce in eight white matter tracts and associate with gestational age (GA)
t birth ( Telford et al., 2017 ). 

The different dMRI metrics themselves as well as the derived g-
actors are correlated ( Chamberland et al., 2019 ; Cox et al., 2016 ;
e Santis et al., 2014 ; Girault et al., 2019 ; Penke et al., 2010 ), suggesting

hat dMRI measures share overlapping information which can cause par-
ial redundancies in data analysis. Recently, a dimensionality reduction
ramework based on multimodal principal component analysis (PCA)
as proposed ( Chamberland et al., 2019 ; Geeraert et al., 2020 ). Using

his framework the authors identified a small number of microstruc-
urally informative and biologically-interpretable components/factors
hich captured 80% of variance in dMRI and myelin-sensitive imag-

ng metrics across the white matter tracts, which associated with age in
 sample of typically developing 8-18-year-old children ( Chamberland
t al., 2019 ; Geeraert et al., 2020 ). 

In this work, using a neonatal dataset and a neonatal white mat-
er tract atlas based on established protocols ( Pecheva et al., 2017 ;

akana et al., 2007 ), we aimed to: (1) determine g-factors for DTI and
ODDI metrics and evaluate whether a single factor captures substan-

ial variance across major tracts; and (2) investigate the shared vari-
nce across dMRI metrics by deriving a multimodal g-factor from DTI
nd NODDI, and quantify its predictive utility for GA at birth beyond
ni-modal models. We hypothesised that g-factors would associate with
A at birth and that they would provide an efficient method for clas-

ifying generalised variation in white matter microstructure associated
ith preterm birth. 

. Materials and methods 

.1. Participants 

The participants were preterm (with GA at birth < 33 weeks)
nd term born infants of the Theirworld Edinburgh Birth Cohort
TEBC) which is a longitudinal study designed to investigate the ef-
ects of preterm birth on brain structure and long term outcome
 Boardman et al., 2020 ). The cohort exclusion criteria were major con-
enital malformations, chromosomal abnormalities, congenital infec-
ion, overt parenchymal lesions (cystic periventricular leukomalacia,
aemorrhagic parenchymal infarction) or post-haemorrhagic ventricu-
ar dilatation. Ethical approval has been obtained from the National Re-
earch Ethics Service, South East Scotland Research Ethics Committee
11/55/0061, 13/SS/0143 and 16/SS/0154). Informed consent was ob-
ained from a person with parental responsibility for each participant.
he study was conducted according to the principles of the Declaration
f Helsinki. The current study group contained 141 preterm and 79 term
nfants. 
2 
.2. Data acquisition 

Infants were scanned at the Edinburgh Imaging Facility: Royal In-
rmary of Edinburgh, University of Edinburgh, UK using a Siemens
AGNETOM Prisma 3 T MRI clinical scanner (Siemens Healthcare Er-

angen, Germany). A 16-channel phased-array paediatric head coil was
sed to acquire 3D T2-weighted SPACE images (T2w) (voxel size = 1
m isotropic, TE = 409 ms and TR = 3200 ms; acquisition time = 2:13
in) and axial dMRI data. Diffusion MRI images were acquired in two

eparate acquisitions to reduce the time needed to re-acquire any data
ost to motion artifacts: the first acquisition consisted of 8 baseline vol-
mes (b = 0 s/mm 

2 [b0]) and 64 volumes with b = 750 s/mm 

2 ; the
econd consisted of 8 b0, 3 volumes with b = 200 s/mm 

2 , 6 volumes
ith b = 500 s/mm 

2 and 64 volumes with b = 2500 s/mm 

2 (acquisition
ime = 4:29 + 5:01 min). An optimal angular coverage for the sampling
cheme was applied ( Caruyer et al., 2013 ). In addition, an acquisition of
 b0 volumes with an inverse phase encoding direction was performed
acquisition time = 0:28 min). All dMRI images were acquired using
ingle-shot spin-echo echo planar imaging (EPI) with 2-fold simultane-
us multislice and 2-fold in-plane parallel imaging acceleration and 2
m isotropic voxels; all three diffusion acquisitions had the same pa-

ameters (TR/TE 3400/78.0 ms). Infants were fed and wrapped and al-
owed to sleep naturally in the scanner. Pulse oximetry, electrocardiog-
aphy and temperature were monitored. Flexible earplugs and neonatal
armuffs (MiniMuffs, Natus) were used for acoustic protection. All scans
ere supervised by a doctor or nurse trained in neonatal resuscitation.
ach acquisition was inspected contemporaneously for motion artefact
nd repeated if there had been movement but the baby was still sleep-
ng; dMRI acquisitions were repeated if signal loss was seen in 3 or more
olumes. 

.3. Data preprocessing 

Prior to defining the current study group, raw structural and dif-
usion images were visually inspected before pre-processing and low-
uality images were discarded. Fifteen out of 235 (6.38%; 7 preterm
nd 8 term infants) acquisitions did not yield usable datasets across
2w or diffusion modalities due to motion or wakefulness during one
r more sequences. Diffusion MRI processing was performed as fol-
ows: for each subject the two dMRI acquisitions were first concatenated
nd then denoised using a Marchenko-Pastur-PCA-based algorithm with
Rtrix3’s command dwidenoise ( Tournier et al., 2019 ; Veraart et al.,

016 ); the eddy current, head movement and EPI geometric distortions
ere corrected using outlier replacement and slice-to-volume registra-

ion ( Andersson et al., 2017 , 2016 , 2003 ; Andersson and Sotiropou-
os, 2016 ) using eddy implemented in FMRIB Software Library (FSL)
 Smith et al., 2004 ); bias field inhomogeneity correction was performed
y calculating the bias field of the mean b0 volume and applying
he correction to all the volumes ( Tustison et al., 2010 ) using MR-
rix3’s dwibiascorrect . The T2w images were processed using the mini-
al processing pipeline of the developing human connectome project

dHCP) to obtain the bias field corrected T2w and the brain mask
 Makropoulos et al., 2018 , 2014 ). Finally, the mean b0 EPI volume
f each subject was co-registered to their structural T2w volume us-
ng boundary-based registration using FMRIB’s Linear Image Registra-
ion Tool (FLIRT) ( Greve and Fischl, 2009 ; Jenkinson et al., 2002 ;
enkinson and Smith, 2001 ). 

NODDI and DTI maps were calculated in the dMRI processed
mages to obtain: fractional anisotropy (FA), mean, axial and ra-
ial diffusivities (MD, AD and RD), neurite density index (NDI),
sotropic volume fraction (ISO) and orientation dispersion index
ODI). DTI model was fitted in each voxel using the weighted
east-squares method DTIFIT as implemented in FSL using only the
 = 750 s/mm 

2 shell. NODDI metrics were calculated using all
hells and the recommended values for neonatal white matter of the
arallel intrinsic diffusivity (1.45 μm 

2 /ms) ( Guerrero et al., 2019 ;
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Figure 1. Visual representation of the generated white matter tracts in the ENA50 neonatal atlas space. Shown in superior (left), anterior (centre) and lateral (right) 
views. 
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hang et al., 2012 ) using the original NODDI MATLAB toolbox
 http://mig.cs.ucl.ac.uk/index.php?n = Tutorial.NODDImatlab ). Repre-
entative maps of DTI and NODDI metrics for a preterm infant in the
EBC are provided in Supplementary Figure 1. 

.4. Tract segmentation 

Whole brain tractography was performed in the ENA50 neonatal
emplate space ( Blesa et al., 2020 , 2016 ) using SingleTensorFT tool
ithin DTI-TK ( Zhang et al., 2007 , 2006 ) which generated white mat-

er tractography from the ENA50 atlas tensor volume. Segmentation of
hite matter tracts was performed within the ENA50 atlas. Regions of

nterest (ROIs) used to delineate the tracts were drawn manually on
he FA image, using the protocols outlined in Wakana et al. (2007) and
echeva et al. (2017) . Placement of ROIs is described in Supplementary
able 1 and these were drawn using the Paintbrush mode in ITK-SNAP
 Yushkevich et al., 2006 ) ( http://www.itksnap.org/ ). The ROIs were
sed to filter whole brain tractography either to select or to exclude
racts crossing the ROIs using TractTool within DTI-TK. The resulting
ract images were binarized and manually refined. The white matter
racts delineated are shown in Figure 1 . 

.5. Tract segmentation in subjects’ native space and extraction of 

ract-averaged dMRI metrics 

T2w processed images were registered to the ENA50 T2w structural
emplate using rigid, affine and symmetric normalization (SyN) imple-
ented in Advanced Normalization Tools (ANTs) ( Avants et al., 2008 ).
he resulting transformation was concatenated with the previously com-
uted transformation from B0 to T2w and used to bring the tract ROIs
efined in the ENA50 space to each subject’s native space in a single
tep. 

The average multi-tissue response function was calculated across the
ull population using the function dwi2response implemented in MRtrix3
 Dhollander et al., 2019 , 2016 ; Smith et al., 2020 ), with a FA threshold
f 0.1. Then, using the function dwi2fod in MRtrix3 the multi-tissue fibre
rientation distribution (FOD) was calculated ( Jeurissen et al., 2014 )
ith the average response function using a spherical harmonic order

L max ) of 8. Only two (white matter and cerebrospinal fluid) response
unctions were used. Finally, a joint bias field correction and multi-
issue informed log-domain intensity normalisation on the FODs images
as performed using the function mtnormalise in MRtrix3 ( Raffelt et al.,
017 ). 
3 
The tracts in native space were created using the iFOD2 algorithm
sing the command tckgen in MRtrix3 ( Tournier et al., 2010 ). The prop-
gated tract ROIs were dilated and the original tract ROIs were used as
eed images for the tractography, while the dilated tract ROIs were used
s masks to constrain the tracts. The length of the fibres was set with
 minimum length of 20 mm and a maximum of 250 mm. Finally, for
ach tract, a track density image (TDI) map (number of tracts per voxel)
as created and normalized between 0 and 1 ( Calamante et al., 2010 )
sing the MRtrix3’s command tckmap . For each tract, the TDI map was
ultiplied by each of the DTI and NODDI maps, summed and divided by

he average of the TDI map to calculate the weighted tract-averages for
ach of the DTI and NODDI metrics. We calculated TDI-weighted tract
verages to better capture the core of the tracts and reduce bias arising
rom partial volume effects as highlighted by Parker et al. (2021) . 

.6. Statistical analysis 

All statistical analyses were performed in R (version 4.0.5) ( R Core
eam, 2020 ). 

.6.1. Effect of preterm birth on tract-averaged dMRI metrics 

The tract-averaged dMRI parameters were adjusted for GA at scan
y fitting a linear model of each scaled (z-transformed) metric on GA
t scan and retaining the residuals. The distributions of the residu-
lised dMRI metrics in each tract were assessed for normality using the
hapiro–Wilk test. Student’s t-test or Mann–Whitney U-test as a non-
arametric alternative was used to compare the tract-averaged values
etween term and preterm groups; Spearman’s rho was used to inves-
igate correlations between tract-averaged values and GA at birth. Re-
orted p-values were adjusted for the false discovery rate (FDR) using
he Benjamini-Hochberg procedure ( Benjamini and Hochberg, 1995 ). 

.6.2. Single-metric g-factors 

The average Pearson’s correlation coefficient for the inter- and intra-
emispheric associations between the tracts was calculated by first
ransforming the Pearson’s r values to Fisher’s Z, taking the average,
nd then back-transforming the value to Pearson’s correlation coeffi-
ient ( Corey et al., 1998 ). 

One PCA was conducted for each of the seven DTI (FA, MD, AD, RD)
nd NODDI (NDI, ODI, ISO) parameters across the 16 tracts to quantify
he proportion of shared variance between them. Thus, in each analy-
is, each subject was described by 16 features, computed as the tract-
veraged values of a given metric across each tract. The first unrotated

http://mig.cs.ucl.ac.uk/index.php?n=Tutorial.NODDImatlab
http://www.itksnap.org/
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rincipal component (PC) scores were extracted as the single-metric g-
actors. The g-factors were adjusted for GA at scan by fitting a linear
odel of each g-factor on GA at scan and retaining the residuals. We

hose to adjust the g-factor scores for GA at scan in regression analyses
ather than dMRI metrics prior to PCA to ensure that the covariances
mong the tracts are not ‘washed out’ by age when defining the g-factor.
e report regression coefficients for linear models fitting a linear each

f the residualised g-factors and GA at scan. All values were scaled (z-
ransformed) before fitting the models, thus, the regression coefficients
re in the units of standard deviations. Reported p-values were adjusted
or the FDR using the Benjamini-Hochberg procedure. 

Structural equation modelling was used to investigate the extent that
ifferences in GA at birth explain the shared variance across tracts (a
ommon pathway model where GA has associations with only the la-
ent g-factor), and the extent that GA at birth conveys unique informa-
ion about individual tracts that is not conveyed via shared variance.
irst, we evaluated the similarities between the g-factors obtained using
CA with the measurement model (confirmatory factor analysis [CFA]
ithin the structural equation model) that was conducted for each met-

ic using the R package lavaan ( Rosseel, 2012 ). We used full informa-
ion maximum likelihood estimation. Model fit was assessed according
o standard fit indices: 𝜒2 test, root mean square error of approximation
RMSEA), comparative fit index (CFI), Tucker-Lewis index (TLI), and
tandardised root mean square residual (SRMR). Residual covariance
aths (paths linking specific tracts to one another to account for the spe-
ific similarities between related tracts beyond their shared covariance
cross all tracts) were added between each of the bilateral tracts, the
enu and splenium of the corpus callosum, as well as anatomically over-
apping tracts (Dice Coefficient > 0.1 based on the dilated tract masks
n template: ILF and IFOF in the same hemisphere, IFOF and UNC in the
ame hemisphere, ILF and UNC in the same hemisphere, and splenium
f the corpus callosum and bilateral IFOF). Pearson’s correlation coeffi-
ients were calculated for the g-factors derived using PCA and CFA. 

Thereafter, we tested three models where 1) GA has associations with
nly the latent g-factor – a common pathway model; 2) GA has associa-
ions with each of the individual tracts separately and not with the latent
actor – an independent pathways model; and 3) GA is associated with
he latent factor and also with some specific factors – a common + in-
ependent pathways model ( Cox et al., 2016 ; Tucker-Drob, 2013 ). To
stimate the common + independent pathways model, we first included
 path from GA to the latent g-factor, and then, in an iterative fash-
on, used modification indices (with a minimum value of 10) to include
ny additional paths from GA to specific tracts that substantially im-
roved model fit. All models were adjusted for GA at scan at g-factor
evel. See Supplementary Figure 2 for graphical representation of the
tructural equation models. We used the 𝜒2 difference test ( aov func-
ion within lavaan ) and model fit indices (Akaike Information Criterion
AIC], Bayesian Information Criterion [BIC], and sample size adjusted
ayesian Information Criterion [saBIC]) to examine the fit differences
etween the models. 

.6.3. Multimodal g-factor 

A multimodal PCA was conducted by pooling all tracts and metrics
sing a modification of an established framework ( Chamberland et al.,
019 ; Geeraert et al., 2020 ). In summary, all metrics were analysed to-
ether in a single PCA, so that each observation was an individual tract
escribed by the 7 dMRI metrics, for a total of n × t observations, where
 is the number of subjects and t is the number of tracts. The first and
econd PC were extracted as the multimodal g-factors which were av-
raged across the 16 tracts for each participant. To study the effect of
A at birth on the multimodal g-factors, we first adjusted the g-factors

or GA at scan by fitting a linear model of each g-factor on GA at scan
nd retaining the residuals; then, linear regression models were fitted
or each of the residualised multimodal g-factors and GA at birth. All
alues were scaled (z-transformed) before fitting the models, thus, the
egression coefficients are in the units of standard deviations. Reported
4 
-values were adjusted for the FDR using the Benjamini-Hochberg pro-
edure. 

.6.4. Prediction modelling 

We used the single- and multimodal g-factors as predictors in lo-
istic regression models to discriminate between preterm and full-term
nfants. We measured classification accuracy, sensitivity and specificity
sing a 10-repeated 10-fold cross-validation scheme. In each of 10 rep-
titions data were randomly split in 10-folds of which 9-folds were used
s training set to compute the PCs, adjust these for GA at scan, and train
he prediction of preterm vs term subjects. The g-factors in the test set
ere computed and adjusted for GA at scan using the models retained

rom the training set. Then, the generalisation ability of the logistic re-
ression model to predict term vs preterm group trained on the training
et was assessed in the test set. Folds were stratified to preserve the pro-
ortion of term and preterm subjects of the whole sample. Accuracy was
omputed as the percentage of correctly classified subjects across folds
nd repetitions. We estimated the empirical distribution of chance by
epeating the prediction analysis 1000 times after randomly assigning
ach subject to either the preterm or term group; permutation p-values
ere calculated by counting how many times the null models obtained
n accuracy equal or greater than the original model. Sensitivity was
alculated as the proportion of correctly identified preterm infants out
f all cases classified as preterm. Specificity was calculated as the pro-
ortion of correctly identified term infants out of all those classified as
erm . 

.7. Data and code availability 

Reasonable requests for original image and anonymised
ata will be considered through the BRAINS governance pro-
ess ( www.brainsimagebank.ac.uk ) ( Job et al., 2017 ). The seg-
ented tracts in the ENA50 template space are available here:
ttps://git.ecdf.ed.ac.uk/jbrl/ena . The code for tract propagation and
verage calculation, as well as scripts for the data analysis in this paper
re available here: https://git.ecdf.ed.ac.uk/jbrl/neonatal-gfactors . 

. Results 

.1. Study sample 

The study group consisted of 220 neonates: 141 participants were
reterm and 79 were term-born controls. Demographic details for par-
icipant characteristics are provided in Table 1 . Among the preterm in-
ants, 30 (21.3%) had bronchopulmonary dysplasia (defined as need for
upplementary oxygen ≥ 36 weeks GA), 7 (5%) developed necrotising
nterocolitis requiring medical or surgical treatment, and 27 (19.1%)
ad an episode of postnatal sepsis defined as either blood culture posi-
ivity with a pathogenic organism, or physician decision to treat for ≥ 5
ays in the context of growth of coagulase negative staphylococcus from
lood or a negative culture. 

.2. Associations between preterm birth and tract-averaged dMRI metrics 

Figure 2 and Supplementary Table 2 show tract-averaged dMRI pa-
ameter values for each of the 16 tracts for the term and preterm
eonates. After adjusting for GA at MRI, in the majority of tracts FA
as lower and MD, RD, AD and ISO were higher in preterm infants com-
ared to term-born controls. However, ATR, CCG and CST showed only
inimal or no differences in the DTI metrics between the two groups.
here were groupwise differences in tract-averaged NDI and ODI values

n a minority of the tracts ( Figure 2 ). 

.3. Single-metric general factors of white matter microstructure 

For all DTI and NODDI metrics, with the exception of ODI, met-
ics across tracts correlate positively ( Figure 3 ). The mean ( ± SD) of the

http://www.brainsimagebank.ac.uk
https://git.ecdf.ed.ac.uk/jbrl/ena
https://git.ecdf.ed.ac.uk/jbrl/neonatal-gfactors
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Figure 2. Tract-averaged diffusion characteristics of brain white matter tracts. Asterisks ( ∗ ) indicate statistically significant (FDR-corrected p < 0.05) differences in 
tract-averaged values between term and preterm infants after adjusting for age at scan. FA = fractional anisotropy, MD = mean diffusivity, AD = axial diffusivity, 
RD = radial diffusivity, NDI = neurite density index, ODI = orientation dispersion index, ISO = isotropic volume fraction, CC genu = corpus callosum genu/forceps 
minor, CC splenium = corpus callosum splenium/forceps major, CST = corticospinal tract, IFOF = inferior fronto-occipital fasciculus, ILF = inferior longitudinal 
fasciculus, AF = arcuate fasciculus, UNC = uncinate fasciculus, CCG = cingulum cingulate gyrus, ATR = anterior thalamic radiation 
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Table 1 

Neonatal participant characteristics. The last column reports the p-values of the group 
differences computed with t-test for continuous variables and Fisher’s exact test for 
categorical variables. 

term (n = 79) preterm (n = 141) term vs. preterm 

GA at birth (weeks) 39.65 (36.42 - 42.14) 29.48 (23.42 - 32.94) n/a 
Birth weight (grams) 3482 (2410 - 4560) 1334 (500 - 2510) n/a 
Birth weight z-score 0.48 (-2.30 - 2.57) -0.02 (-3.13 - 2.14) p < 0.001 
GA at scan (weeks) 42.07 (38.28 - 46.14) 40.78 (36.56 - 45.84) p < 0.001 
M:F ratio 43:36 83:58 p = 0.571 

GA = Gestational age, M = male, F = female. 

Figure 3. Heatmaps of inter- and intra-hemispheric associations (Pearson’s r) for tract-averaged DTI (top row) and NODDI (bottom row) metrics. In each case, the 
heatmaps are arranged by grouping highly correlated tracts around the diagonal. Blank squares represent correlations that were not nominally statistically significant 
(p > 0.05). The plot on the bottom right represents the density of the correlation magnitudes. CC genu = corpus callosum genu/forceps minor, CC splenium = corpus 
callosum splenium/forceps major, CST = corticospinal tract, IFOF = inferior fronto-occipital fasciculus, ILF = inferior longitudinal fasciculus, AF = arcuate fasciculus, 
UNC = uncinate fasciculus, CCG = cingulum cingulate gyrus, ATR = anterior thalamic radiation. 

c  

(  

(
 

r  

m  

t  

t  

a  

o  

t  

i  

5  

g
 

b  

(  

g  

G  

i  

t

 

e  

f  

e  

f  

i  

t  

(  

g  

5
 

e  

b  

i  

t  

i  

f  

a  

i  

t  

a  
orrelations was 0.601 ( ± 0.294) for FA, 0.713 ( ± 0.217) for MD, 0.573
 ± 0.199) for AD, 0.721 ( ± 0.234) for RD, 0.628 ( ± 0.250) for NDI, 0.351
 ± 0.287) for ODI, and 0.584 ( ± 0.221) for ISO. 

We conducted separate PCAs for each of the 7 DTI and NODDI met-
ics on 16 white matter tracts to derive single-metric g-factors. For each
etric, the scree plot provided evidence for a strong single factor cap-

uring common variance across the tracts indicated by the compara-
ively large eigenvalue ( Fig. 4 ). This was less clear for ODI, which had
 weaker first component and stronger second component compared to
ther dMRI metrics. The first PC is the g-factor for each of the white mat-
er diffusion measures and this explained 61.3% variance in FA, 71.9%
n MD, 59.9% in AD, 72.6% in RD, 63.9% in NDI, 41.8% in ODI, and
9.8% in ISO across the tracts. The tract loadings for the single-metric
-factors are presented in Table 2 . 

After adjustment for GA at scan, there were significant associations
etween GA at birth and general factors of FA, MD, AD, RD and ISO
 Figure 5 ). The strongest relationship was seen between GA at birth and
ISO (GA at birth explained 11.06% of variance in gISO). Interestingly,
A at birth did not significantly associate with the g-factors of biophys-

cal measures of white matter microstructure (NDI and ODI), mirroring
he single-tract results described above. 
6 
To investigate the extent to which shared variance across all tracts
xplains differences in GA at birth, or whether specific tracts carry
urther information beyond generalised covariance, we used structural
quation modelling. We observed that the measurement model (CFA)
or each DTI and NODDI metric is highly collinear with the PCA results
ndicated by the similarities between the factor loadings (Supplemen-
ary Table 3; see Supplementary Table 4 for fit indices; all CFI > 0.93
except ODI, CFI = 0.891)) and high positive correlations between the
-factors derived using PCA and CFA (all r > 0.98; Supplementary Table
). 

The structural equation modelling results showed that for the gen-
ral factors of FA, MD, AD, RD and ISO there was evidence that GA at
irth significantly associated with the g-factor (common model). The
ndependent pathway model (where GA at birth associates with the
ract-specific values) fit significantly better than the model that only
ncluded the common pathway of GA at birth associations ( Table 3 ; for
actor loadings and regression coefficients see Supplementary Table 6),
lthough it included the highest number of paths. We inspected the mod-
fication indices of the common pathway model to determine whether
here are incremental, unique tract-specific effects of GA at birth which
re not conveyed by the effect of GA at birth on the shared variance.



K. Vaher, P. Galdi, M. Blesa Cabez et al. NeuroImage 254 (2022) 119169 

Figure 4. Scree plot for the principal component analysis, showing the eigenvalue against the number of components for each white matter tract dMRI metric. 
FA = fractional anisotropy, MD = mean diffusivity, AD = axial diffusivity, RD = radial diffusivity, NDI = neurite density index, ODI = orientation dispersion index, 
ISO = isotropic volume fraction. 

Table 2 

Tract loadings (correlation between the manifest variable and extracted component score) and 
explained variance for the first unrotated principal component (g-factor) for the seven dMRI 
metrics. 

Tract FA MD AD RD NDI ODI ISO 

AF left 0.860 0.846 0.754 0.868 0.852 0.414 0.833 
AF right 0.704 0.825 0.797 0.813 0.781 0.681 0.807 
ATR left 0.758 0.834 0.748 0.839 0.871 0.192 0.794 
ATR right 0.518 0.761 0.715 0.727 0.811 0.063 0.718 
CC genu 0.772 0.846 0.782 0.853 0.740 0.184 0.860 
CC splenium 0.539 0.832 0.668 0.785 0.467 0.637 0.746 
CCG left 0.589 0.813 0.703 0.812 0.808 0.646 0.713 
CCG right 0.618 0.834 0.758 0.824 0.797 0.645 0.760 
CST left 0.779 0.832 0.760 0.833 0.818 0.544 0.695 
CST right 0.784 0.825 0.699 0.835 0.800 0.616 0.649 
IFOF left 0.936 0.933 0.871 0.945 0.913 0.882 0.856 
IFOF right 0.928 0.890 0.810 0.911 0.853 0.883 0.778 
ILF left 0.880 0.842 0.746 0.868 0.705 0.808 0.715 
ILF right 0.877 0.844 0.750 0.868 0.718 0.853 0.729 
UNC left 0.899 0.891 0.842 0.905 0.887 0.733 0.830 
UNC right 0.899 0.905 0.848 0.916 0.866 0.765 0.846 
Variance explained (%) 61.341 71.899 58.938 72.562 63.917 41.785 59.775 

CC genu = corpus callosum genu/forceps minor, CC splenium = corpus callosum sple- 
nium/forceps major, CST = corticospinal tract, IFOF = inferior fronto-occipital fasciculus, 
ILF = inferior longitudinal fasciculus, AF = arcuate fasciculus, UNC = uncinate fasciculus, 
CCG = cingulum cingulate gyrus, ATR = anterior thalamic radiation, FA = fractional anisotropy, 
MD = mean diffusivity, AD = axial diffusivity, RD = radial diffusivity, NDI = neurite density 
index, ODI = orientation dispersion index, ISO = isotropic volume fraction. 
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he modification indices did not indicate additional tract-specific paths
ssociated with GA at birth for any metric, thus, we were unable to con-
truct models with both common and independent pathways and this
uggests that the common model provides sufficient refinement of the
roperties of white matter microstructure that are affected by GA at

irth. fi  

7 
.4. Multimodal general factors of white matter microstructure 

Next, we studied the shared variance of DTI and NODDI metrics
cross white matter tracts. The correlation matrices in Figure 5 show
hat the metrics form two clusters of positively correlated metrics: the
rst cluster represents positive correlations between FA and NDI, and
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Figure 5. Associations between GA at birth and the g-factors of the seven dMRI metrics. Regression lines and 95% confidence intervals (shaded) are shown for linear 
regression models between GA at birth and the g-factor scores, adjusted for GA at scan. The 𝛽 coefficients are in standardised units so represent a standard deviation 
change in the residualised g-factor scores per standard deviation increase in GA at birth; variance explained in the model is shown in adjusted R 2 . Reported p-values 
are adjusted for the false discovery rate (FDR) using the Benjamini-Hochberg procedure. FA = fractional anisotropy, MD = mean diffusivity, AD = axial diffusivity, 
RD = radial diffusivity, NDI = neurite density index, ODI = orientation dispersion index, ISO = isotropic volume fraction. 

Table 3 

Model fit indices for each of the structural equation models linking GA at birth with the g-factors or indi- 
vidual white matter tracts. P-values refer to the difference ( 𝜒2 difference test) between the common and 
the independent pathway models. For full parameter estimates in these models see Supplementary Table 6. 

Metric Model 𝜒2 df 𝜒2 diff p AIC BIC saBIC 

FA Common 489.530 118 - - -449688 -449518 -449676.324 
Independent 313.520 103 176.010 < 2 . 2 × 10 − 16 -449834 -449613 -449818.963 

MD Common 691.410 118 - - -450877 -450707 -450865.709 
Independent 491.110 103 200.290 < 2 . 2 × 10 − 16 -451047 -450827 -451032.635 

AD Common 528.500 118 - - -449345 -449175 -449333.485 
Independent 421.360 103 107.140 5 . 70 × 10 − 16 -449422 -449201 -449407.254 

RD Common 664.165 118 - - -450988 -450818 -450976.446 
Independent 441.838 103 222.330 < 2 . 2 × 10 − 16 -451180 -450959 -451165.403 

NDI Common 455.697 118 - - -450056 -449887 -450045.040 
Independent 356.985 103 98.711 2 . 29 × 10 − 14 -450125 -449904 -450110.382 

ODI Common 438.010 118 - - -448008 -447839 -447996.961 
Independent 363.457 103 74.553 6 . 82 × 10 − 10 -448053 -447832 -448038.145 

ISO Common 543.819 118 - - -449594 -449424 -449582.735 
Independent 420.362 103 123.460 < 2 . 2 × 10 − 16 -449687 -449467 -449672.822 

FA = fractional anisotropy, MD = mean diffusivity, AD = axial diffusivity, RD = radial diffusivity, NDI = neu- 
rite density index, ODI = orientation dispersion index, ISO = isotropic volume fraction, AIC = Akaike Infor- 
mation Criterion, BIC = Bayesian Information Criterion, CFI = comparative fit index, TLI = Tucker-Lewis 
index, saBIC = sample size adjusted Bayesian Information Criterion. 
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Table 4 

dMRI metric loadings to the multimodal principal compo- 
nents. 

Metric PC1 PC2 

loading contribution loading contribution 

FA 0.686 11.207 0.670 18.893 
MD -0.949 21.412 0.313 4.119 
AD -0.682 11.068 0.712 21.320 
RD -0.992 23.438 0.057 0.138 
NDI 0.750 13.402 0.608 15.565 
ODI -0.693 11.412 -0.559 13.163 
ISO -0.582 8.062 0.798 26.803 

FA = fractional anisotropy, MD = mean diffusivity, AD = ax- 
ial diffusivity, RD = radial diffusivity, NDI = neurite density 
index, ODI = orientation dispersion index, ISO = isotropic 
volume fraction. 
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he second cluster of positive correlations is formed of MD, RD, AD and
SO, while ODI appears to be a weaker member of the second cluster.
hese two clusters are negatively correlated with each other. However,
here is also variability in between-metric correlations between the dif-
erent tracts. Nevertheless, the correlation matrix in the middle panel
f Figure 6 highlights the similarity between the microstructural mea-
ures, which is consistent with them representing shared information
bout tract microstructure. 

A PCA including all seven DTI and NODDI metrics revealed that
3.9% of the variability in dMRI metrics across white matter tracts is ac-
ounted by the first two PCs ( Figure 7 ). The first PC (proportion of vari-
nce explained 60.0%, 𝜆= 4.20) is mostly composed of RD and MD (both
ontributing negatively, 23.4% and 21.4%, respectively), and the second
C which captures 33.9% of variance in the data ( 𝜆 = 2.38) is mostly
riven by ISO (26.8%), AD (21.3%) and FA (18.9%). The loadings and
ontributions of the dMRI metrics to the first two PCs are presented in
able 4 . RD and MD appear to be solely loading onto the PC1 (together
ontribute < 5% to the PC2), while the other dMRI metrics have more
imilar contributions to PC1 and PC2. The variability of between-tract
orrelations of dMRI metrics as mentioned above is also reflected in the
lustering of tracts on the PC axes ( Figure 8 ). 

GA at birth was significantly associated with both multimodal g-
actors ( Figure 9 ): the first multimodal g-factor that has high negative
ontributions from RD and MD was positively, and the second multi-
odal g-factor with high positive contributions from ISO and AD was
egatively associated with GA at birth. It is possible that individual
racts may contribute to varying degrees to the relationship with age
Supplementary Table 2). 

.5. Utility of g-factors to classify infants based on gestational age 

Given the high shared variance within and between the dMRI met-
ics across major white matter tracts and the significant associations
etween GA at birth and the derived g-factors, we asked whether g-
actors are able to classify infants based on GA at birth (preterm vs term
lassification) ( Table 5 ). Overall, the prediction accuracy for the single
etric and multimodal g-factors only marginally exceeded chance (ran-
om classification accuracy in the current sample is 64.1% due to the
mbalance of term and preterm infants). The highest prediction accuracy
75.2%) was achieved when incorporating all single metric g-factors in
ne model, however, it has to be noted that this is the least parsimonious
odel with seven predictors compared to one and two in the other mod-

ls. 

. Discussion 

In this study, utilising the substantial shared variance within and be-
ween DTI and NODDI metrics across 16 major white matter tracts, we
9 
erive single- and multimetric g-factors which covary with GA at birth.
sing structural equation modelling, we show that whilst the shared
ariance among tracts carries much of the white matter microstruc-
ural information about GA-based differences, there is modest additional
nique information at the level of individual pathways that enhances
erm/preterm differentiation, though larger samples are required to re-
iably estimate the precise magnitudes and loci of the most informative
hite matter pathways. We demonstrate that combining single-metric
-factors from DTI and NODDI together in one prediction model offered
he most efficient method for characterising variation in white matter
icrostructure associated with preterm birth, suggesting each metric

arries additive information. These results add to the body of literature
uggesting generalised dysmaturation of the white matter in the preterm
eonates. 

Variance in measures derived from dMRI is shared among white mat-
er tracts in both neonates and adults. Previous studies suggest strong
etween-tract correlations of dMRI metrics in newborns, which show
 decreasing trend from birth to 2 years of age ( Girault et al., 2018 ;
ee et al., 2017 ). The between-tract correlations are weaker in adults
ompared to infants ( Cox et al., 2016 ; Penke et al., 2010 ), and increase
gain at later ages ( Cox et al., 2016 ). These results are supported by our
urrent findings as the average correlation coefficients of the DTI metrics
mong WM tracts in the current neonatal sample are of similar mag-
itude compared to previously reported in healthy term-born infants
 Lee et al., 2017 ). Previous studies have utilised the shared white matter
roperties across tracts and have suggested that generalised measures to
apture global white matter microstructure can be derived, which are
seful for investigating global phenomena ( Cox et al., 2016 ; Lee et al.,
017 ; Penke et al., 2010 ; Telford et al., 2017 ). Here, we report that the
-factors capture 58.9-72.6% of variance in DTI metrics, thus replicat-
ng our previous results in an independent, larger sample of neonates
nd different tract segmentation protocol ( Telford et al., 2017 ). We ad-
itionally expand on the previous work and report that similarly to DTI
etrics, in neonates there is substantial shared variance of NODDI met-

ics across white matter tracts (41.8-62.9%) as was previously reported
n adult population ( Cox et al., 2016 ). We observed the largest variance
aptured by a single g-factor for RD, while there was least evidence
or a single latent factor for ODI, indicated by the comparably smaller
igenvalue for the first component. The weaker cross-tract correlations
een for ODI compared to other dMRI measures were previously also re-
orted in the UK Biobank dataset ( Cox et al., 2016 ) and together these
esults suggest that this measure of white matter microstructure may be
apturing tract-specific rather than global effects. Age-related changes
n between-tract correlations as discussed above are also reflected in
he variance explained by the single-metric g-factors for each of the
MRI metrics, which is highest in the newborns as reported in the cur-
ent paper as well as by Lee et al. (2017) compared to early childhood
 Lee et al., 2017 ) and adulthood ( Cox et al., 2016 ; Penke et al., 2010 ).
owever, differences in the tract segmentation protocols, included tracts
s well as models/approaches used for deriving the g-factors have to be
aken into account when making these comparisons. 

The correlations between different DTI and NODDI metrics them-
elves indicate that they share overlapping information in the brain
 Chamberland et al., 2019 ; De Santis et al., 2014 ), but less is known
bout the covariance of dMRI measures in early development when wa-
er diffusion properties are different. By examining the covariance of
MRI metrics averaged over 16 white matter tracts, we observed that
here are two clusters of positively correlated metrics: the first cluster
ncludes measures of microstructural complexity and anisotropy of FA
nd NDI while the second cluster includes measures related to water
iffusivity (MD, RD, AD and ISO); the metrics in these two clusters are
n turn negatively correlated with one another. The highest positive cor-
elations are between the pairs of FA-NDI (microstructural complexity
nd anisotropy), RD-MD (hindrance and degree of diffusivity) and AD-
SO (free/diffuse water). Importantly, the dMRI metric covariance struc-
ures vary slightly between tracts, confirming the tract-specific variabil-
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Figure 6. Correlation matrices of the seven diffusion measures. The middle image represents the average of all white matter tracts. Matrices are re-organised 
using hierarchical clustering, grouping measures that have similar correlations together. Note that for bilateral tracts, the left and right values were averaged 
prior to performing the correlation. Genu = corpus callosum genu/forceps minor, splenium = corpus callosum splenium/forceps major, CST = corticospinal tract, 
IFOF = inferior fronto-occipital fasciculus, ILF = inferior longitudinal fasciculus, AF = arcuate fasciculus, UNC = uncinate fasciculus, CCG = cingulum cingulate 
gyrus, ATR = anterior thalamic radiation, FA = fractional anisotropy, MD = mean diffusivity, AD = axial diffusivity, RD = radial diffusivity, NDI = neurite density 
index, ODI = orientation dispersion index, ISO = isotropic volume fraction. 
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Figure 7. Multimodal PCA. (A) Scree plot of the eigenvalues, (B) PCA variable contribution plot; the colours represent the contribution of the dMRI metric to the 
components. FA = fractional anisotropy, MD = mean diffusivity, AD = axial diffusivity, RD = radial diffusivity, NDI = neurite density index, ODI = orientation 
dispersion index, ISO = isotropic volume fraction. 

Figure 8. Visualisation of individual tract co- 
ordinates on the multimodal principal com- 
ponent axes. CC genu = corpus callosum 

genu/forceps minor, CC splenium = corpus cal- 
losum splenium/forceps major, CST = corti- 
cospinal tract, IFOF = inferior fronto-occipital 
fasciculus, ILF = inferior longitudinal fascicu- 
lus, AF = arcuate fasciculus, UNC = uncinate 
fasciculus, CCG = cingulum cingulate gyrus, 
ATR = anterior thalamic radiation 
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ty highlighted by the CFA. For example, the splenium of the corpus
allosum appears to have weaker between-metric correlations overall
lthough high correlations between MD-RD, FA-NDI and AD-ISO are still
resent. Interestingly, ODI, on average, appears to have weaker corre-
ations with other dMRI metrics, which may further suggest between-
ract variability of this measure of fibre orientation. Indeed, in the un-
inate, inferior fronto-occipital fasciculi, cingulum cingulate gyri and
orticospinal tracts, ODI is a part of the second cluster of positively cor-
elated metrics, while it has very low correlations with other metrics
11 
n the inferior longitudinal fasciculi and the anterior thalamic radiation
nd is negatively associated with all other dMRI metrics in the genu of
he corpus callosum. AD and ISO correlations with NDI, FA and ODI
ppear considerably weaker on average, possibly also due to variations
n the dMRI metric covariance structure between tracts. Together, our
esults suggest that similarly to what is observed in adults and children
 Chamberland et al., 2019 ; De Santis et al., 2014 ; Geeraert et al., 2020 ),
he interdependence of dMRI measures is already present at birth. 
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Figure 9. Associations between GA at birth and the multimodal g-factors. The extracted multimodal principal components were averaged across the 16 tracts for 
each participant which resulted in a single estimate for the multimodal g-factors for each subject. Regression lines and 95% confidence intervals (shaded) are shown 
for linear regression models between GA at birth and the g-factor scores, adjusted for GA at scan. The 𝛽 coefficients are in standardised units so represent a standard 
deviation change in the residualised g-factor scores per standard deviation increase in GA at birth; variance explained in the model is shown in adjusted R 2 . Reported 
p-values are adjusted for the false discovery rate (FDR) using the Benjamini-Hochberg procedure. 

Table 5 

Prediction model results based on 10-repeated 10-fold cross validated logistic regression 
models using the single-metric g-factors and multimodal g-factors. Reported values are mean 
and standard deviations computed across cross-validation folds and repetitions. Permutation 
p-values are computed over 1000 random permutations of the group variable. 

Accuracy Sensitivity Specificity Permutation p-value 

gFA 64.9 ± 5.0 0.133 ± 0.110 0.938 ± 0.074 0.005 
gMD 67.3 ± 6.4 0.249 ± 0.144 0.911 ± 0.087 0 
gRD 67.6 ± 7.1 0.268 ± 0.165 0.905 ± 0.091 0 
gAD 65.5 ± 6.6 0.186 ± 0.122 0.918 ± 0.077 0 
gNDI 64.1 ± 1.0 0 ± 0 1 ± 0 0.210 
gODI 64.0 ± 3.2 0.034 ± 0.056 0.979 ± 0.043 0.703 
gISO 67.7 ± 8.0 0.364 ± 0.154 0.852 ± 0.093 0 
All DTI 65.5 ± 7.6 0.343 ± 0.181 0.830 ± 0.010 0.002 
All NODDI 71.3 ± 8.3 0.512 ± 0.148 0.825 ± 0.083 0 
All single-metric 75.2 ± 8.4 0.589 ± 0.169 0.843 ± 0.093 0 
Multimodal PC1 67.9 ± 6.9 0.273 ± 0.153 0.906 ± 0.090 0 
Multimodal PC2 64.3 ± 7.8 0.206 ± 0.131 0.889 ± 0.082 0.010 
Multimodal PC1 and PC2 67.5 ± 8.5 0.358 ± 0.169 0.854 ± 0.092 0 

FA = fractional anisotropy, MD = mean diffusivity, AD = axial diffusivity, RD = radial 
diffusivity, NDI = neurite density index, ODI = orientation dispersion index, ISO = isotropic 
volume fraction, DTI = diffusion tensor imaging, NODDI = neurite orientation dispersion 
and density imaging. 
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Interestingly, however, the correlation patterns between the dMRI
etrics vary in neonates compared to older children and adults. For ex-

mple, whilst we observed positive correlations between AD and RD in
eonates, these two measures of water diffusivity are negatively corre-
ated in older children and adults ( Chamberland et al., 2019 ; De Santis
t al., 2019 ). Furthermore, these previous studies reported strong posi-
12 
ive correlations between FA and AD, while in neonates, we observe a
egative correlation between these metrics. These differences could re-
ect maturation of the tracts with age. Yet, some other patterns appear
imilar across the life course such as the positive correlations between
A and NDI and their negative association with MD, as well as the over-
ll weak correlation between ODI and other measures of white matter
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icrostructure ( Chamberland et al., 2019 ; Cox et al., 2016 ; De Santis
t al., 2014 ; Geeraert et al., 2020 ). 

We found that a considerable proportion of variance is shared across
he dMRI metrics in neonates, which confirms previous observations
n children and adolescents ( Chamberland et al., 2019 ; Geeraert et al.,
020 ). We used this shared variance to derive multimodal g-factors of
hite matter microstructure using PCA as a data reduction technique.
e found that two PCs explained a substantial amount (almost 94%)

f the covariance among the seven DTI and NODDI metrics across 16
hite matter tracts. In older children and adolescents, Chamberland

t al. (2019) reported that 80% of variance in diffusion metrics was cap-
ured by two PCs and Geeraert et al. (2020) reported that three PCs were
eeded to capture 80% of variance diffusion and myelin-related metrics.
imilarly in adults, three PCs have been shown to capture 80% of vari-
nce in white matter diffusion, myelin and structural metrics ( De Santis
t al., 2014 ). Thus, it appears that the diffusion properties of white mat-
er tracts may be shared to a higher extent in neonates compared to
lder children and adults, which could reflect refinement of tract diffu-
ion properties in development. 

The interpretation of PCs derived from multiple input parameters
equires consideration of the contribution and direction of individual
etrics, and given that the PCs are orthogonal, they represent two un-

orrelated aspects of the covariance between diffusion metrics. Here,
ultimodal PC1, which accounts for the largest proportion of variance

n the data (60%), consists of measures sensitive to magnitude of dif-
usivity (RD and MD). In contrast, multimodal PC2, which accounts for
4% of variance, consists of measures of free water (ISO) as well as
iffusion anisotropy (AD, FA). Therefore, as has been reported in chil-
ren and adults, the main axes of covariance consist of dMRI metrics
hat share similarities in their sensitivity to different tissue properties
diffusivity and anisotropy) ( Chamberland et al., 2019 ; De Santis et al.,
014 ; Geeraert et al., 2020 ); although the exact contributions of differ-
nt parameters vary, which could be due to different white matter mea-
ures used in the studies. Including parameters that are more sensitive
o myelin such as those from magnetisation transfer imaging could fur-
her help to disentangle the microstructural properties of white matter
n the developing brain. 

We were then interested in testing whether the derived g-factors can
e used as global measures to characterise atypical white matter de-
elopment associated with low GA. After adjusting for age at scan, we
eport that gFA was positively and gMD, gAD and gRD negatively asso-
iated with GA at birth. Thus, we replicate previous results in a larger
ndependent cohort and across more tracts ( Telford et al., 2017 ). In ad-
ition, here we report significant negative association between GA at
irth and gISO, which had the strongest correlation with GA at birth
mong the DTI and NODDI g-factors. Thus, those infants born preterm
xhibit less coherent, but a greater magnitude of water diffusion across
he major white matter tracts in the brain compared to term-born con-
rols. Interestingly, despite the substantial variance reported in NDI and
DI across white matter tracts, gNDI and gODI are not significantly as-

ociated with GA at birth. This could indicate that these two metrics
apture more specific aspects of tract composition, which may be less
eaningful at a global level. 

These results together suggest generally lower white matter in-
egrity and higher water diffusivity in infants born preterm compared
o term, and are in line with findings obtained using other analysis
pproaches such as tract-based spatial statistics ( Barnett et al., 2018 ;
hompson et al., 2019 ) or tract-specific analyses ( Pecheva et al., 2017 ).
e used structural equation modelling to test whether the common vari-

nce shared among all tracts is sufficient to explain differences between
nfants born at varying GA. We found that the tract-specific (indepen-
ent pathways) model is significantly better than the common model,
uggesting there is incrementally valid, low level information for GA at
irth contained in the unique tract-specific microstructural properties.
owever, it has to be noted that this model included the highest num-
er of paths, and the residual variance that cannot be accounted for by
13 
he common factor constitutes both tract-specific aspects of microstruc-
ure and measurement error. We could not reliably detect any additional
ract-specific pathways to be substantially more informative for GA at
irth compared to the general/common factor, suggesting that the most
arsimonious model, in which GA at birth affects the global/shared vari-
nce of the tracts, offers valuable distillation of the between-person dif-
erences in white matter microstructure that are pertinent for GA vari-
bility. 

The prediction modelling results revealed that the single-metric g-
actors (except for gNDI and gODI) achieved preterm vs term classi-
cation accuracy significantly higher than chance, but the classifica-
ion accuracy was relatively low. It could be hypothesised that preterm
irth has a diffuse effect on white matter microstructure, which is bet-
er captured by methods that do not rely on anatomically constrained
egions (e.g. peak width of skeletonised metrics ( Baykara et al., 2016 ;
lesa et al., 2020 )). Nevertheless, the g-factors could carry informa-
ion beyond the simple dichotomy of term vs preterm birth and could
e useful for investigating other environmental or genetic/epigenetic
xposures that are hypothesised to affect global white development
 Boardman et al., 2014 ; Boardman and Counsell, 2020 ; Krishnan et al.,
017 ; Wheater et al., 2021 ), or for predicting neurocognitive outcomes
s previously reported in adults and children ( Cox et al., 2019 , 2016 ;
ee et al., 2017 ; Penke et al., 2010 ). 

We also report that the multimodal g-factors associate with GA at
irth, which, given the correlations of the dMRI metrics with the mul-
imodal g-factors, give a similar interpretation of the effect of GA at
irth on dMRI metrics. However, despite the significant association,
he preterm vs term classification accuracy achieved using the multi-
odal g-factors was, similarly to single-metric g-factors, relatively low.

nterestingly, however, we achieved the greatest classification accuracy
hen combining all single metric g-factors together in one prediction
odel. These results may imply that despite global covariance of dMRI
etrics in neonates, each one carries information on specific (and addi-

ive) aspects of the underlying microstructure that differ in preterm com-
ared to term subjects. It is important to acknowledge that the model
ombining all single-metric g-factors is by far the least parsimonious
odel tested, and increasing the number of predictors could artificially

nflate the estimation of prediction accuracy. However, the combined
ingle g-factor prediction model is by far the most successful one and
e have used cross-validation with the aim to minimise bias and mili-

ate against the artificial inflation. 

. Conclusion 

In this work, we extracted tract-averaged DTI and NODDI metrics
rom 16 major white matter tracts in 220 neonates of wide-ranging
A at birth. We then applied PCA as a data reduction technique to de-

ive single-metric and multimodal general factors of white matter mi-
rostructure. These g-factors explained substantial variance within and
etween DTI and NODDI metrics across white matter tracts and asso-
iated with GA at birth. Combining single-metric g-factors together in
ne prediction model achieved discriminating power between term and
reterm infants. This framework for a principled approach for dMRI data
eduction may be useful for investigating the upstream determinants and
eurocognitive consequences of diseases characterised by atypical white
atter development. 
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