13 research outputs found

    Mutational signatures of ionizing radiation in second malignancies

    Get PDF
    Ionizing radiation is a potent carcinogen, inducing cancer through DNA damage. The signatures of mutations arising in human tissues following in vivo exposure to ionizing radiation have not been documented. Here, we searched for signatures of ionizing radiation in 12 radiation-associated second malignancies of different tumour types. Two signatures of somatic mutation characterize ionizing radiation exposure irrespective of tumour type. Compared with 319 radiation-naive tumours, radiation-associated tumours carry a median extra 201 deletions genome-wide, sized 1-100 base pairs often with microhomology at the junction. Unlike deletions of radiation-naive tumours, these show no variation in density across the genome or correlation with sequence context, replication timing or chromatin structure. Furthermore, we observe a significant increase in balanced inversions in radiation-associated tumours. Both small deletions and inversions generate driver mutations. Thus, ionizing radiation generates distinctive mutational signatures that explain its carcinogenic potential.This work was supported by funding from the Wellcome Trust (grant reference 077012/Z/05/Z), Skeletal Cancer Action Trust, Rosetrees Trust UK, Bone Cancer Research Trust, the RNOH NHS Trust, the National Institute for Health Research Health Protection Research Unit in Chemical and Radiation Hazards and Threats at Newcastle University in partnership with Public Health England. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, the Department of Health or Public Health England. Tissue was obtained from the RNOH Musculoskeletal Research Programme and Biobank, co-ordinated by Mrs Deidre Brooking and Mrs Ru Grinnell, Biobank staff, RNOH. Support was provided to AMF by the National Institute for Health Research, UCLH Biomedical Research Centre, and the CRUK UCL Experimental Cancer Centre. S.N.Z. and S.B. are personally funded through Wellcome Trust Intermediate Clinical Research Fellowships, P.J.C. through a Wellcome Trust Senior Clinical Research Fellowship

    Biological differences underlying sex and gender disparities in bladder cancer: current synopsis and future directions

    No full text
    Abstract Sex and gender disparities in bladder cancer have long been a subject of interest to the cancer research community, wherein men have a 4 times higher incidence rate than women, and female patients often present with higher-grade disease and experience worse outcomes. Despite the known differences in disease incidence and clinical outcomes between male and female bladder cancer patients, clinical management remains the same. In this review, we critically analyze studies that report on the biological differences between men and women and evaluate how these differences contribute to sex and gender disparities in bladder cancer. Distinct characteristics of the male and female immune systems, differences in circulating hormone levels and hormone receptor expression, and different genetic and epigenetic alterations are major biological factors that all likely contribute to disparate incidence rates and outcomes for male and female bladder cancer patients. Future preclinical and clinical studies in this area should employ experimental approaches that account for and consider sex and gender disparities in bladder cancer, thereby facilitating the development of precision medicine for the effective treatment of bladder cancer in all patients

    Prenatal Sildenafil Therapy Improves Cardiovascular Function in Fetal Growth Restricted Offspring of Dahl Salt-Sensitive Rats

    No full text
    Fetal growth restriction (FGR) is associated with increased risk for cardiovascular and renal disorders in later life. Prenatal sildenafil improves birth weight in FGR animal models. Whether sildenafil treatment protects against long-term cardiovascular and renal disease in these offspring is unknown. The aim of this study is to test the hypothesis that prenatal sildenafil ameliorates cardiovascular and renal function in FGR offspring of Dahl salt-sensitive rats. Sildenafil citrate (60 mg/kg per day) or control gel diet (containing 0.3% salt) was administered from gestational day ten until birth. In male and female offspring, the mean arterial pressure was measured by telemetry in 1 subset from week 5 until week twenty. Echocardiographic parameters, glomerular filtration rate, and fractional electrolyte excretion were determined in another subset at week 9. Aortic and mesenteric artery rings were prepared to assess endothelial-dependent (acetylcholine) and -independent (sodium nitroprusside) vasorelaxation (week 10). The rise in mean arterial pressure per week was attenuated in treated versus untreated male offspring. Mesenteric arteries showed an increased endothelium-dependent relaxation and improved endothelium-independent relaxation in treated versus control male offspring. No differences in aortic relaxation, echocardiographic parameters or renal function were observed between groups. Prenatal sildenafil treatment subtly improves cardiovascular but not renal function in the offspring of this FGR rat model. Translationally, in utero treatment could be beneficial for cardiovascular programming in a sex-specific manner; however, caution is warranted since recent human trials have been halted because of potentially deleterious neonatal side effects when treating pregnancies complicated with severe FGR with sildenafil

    Randomized trial of the efficacy and safety of Berotralstat (BCX7353) as an oral prophylactic therapy for hereditary angioedema: results of APeX-2 ihrough 48 weeks (Part 2)

    No full text
    Background: Berotralstat (BCX7353) is a recently approved, oral, once-daily kallikrein inhibitor for hereditary angioedema (HAE) prophylaxis. In the APeX-2 trial, berotralstat reduced HAE attack rates over 24 weeks, with a favorable safety and tolerability profile. Objective: Evaluate berotralstat safety, tolerability, and effectiveness over 48 weeks. Methods: APeX-2 is a phase 3, parallel-group, multicenter trial (NCT03485911) in patients with HAE due to C1 esterase inhibitor deficiency. Part 1 was double-blind and placebo-controlled, with patients randomized to 24 weeks of berotralstat 150 mg, 110 mg, or placebo. In part 2, patients continued berotralstat the same dose or, if initially randomized to placebo, were rerandomized to berotralstat 150 mg or 110 mg through weeks 24 to 48. The primary end point was safety and tolerability. Results: One hundred eight patients received 1 or more doses of berotralstat in part 2. Treatment-emergent adverse events (TEAEs) occurred in 30 of 39 patients (77%) in the placebo group during part 1, and 25 of 34 patients (74%) re-randomized from placebo to berotralstat 110 mg or 150 mg in part 2, with drug-related TEAEs in 13 of 39 (33%), and 11 of 34 (32%) in the same groups. Most TEAEs were mild or moderate, with no serious drug-related TEAEs. The most common TEAEs were upper respiratory tract infections, abdominal pain, diarrhea, and vomiting. Mean (±standard error of the mean) monthly attack rates at baseline and week 48 were 3.06 (±0.25) and 1.06 (±0.25) in the berotralstat 150mg 48-week group and 2.97 (±0.21) and 1.35 (±0.33) in the berotralstat 110mg 48-week group. Conclusions: The safety, tolerability, and effectiveness of berotralstat were maintained over 48 weeks of treatment

    Deletion of the deISGylating enzyme USP18 enhances tumour cell antigenicity and radiosensitivity

    No full text
    Background Interferon (IFN) signalling pathways, a key element of the innate immune response, contribute to resistance to conventional chemotherapy, radiotherapy, and immunotherapy, and are often deregulated in cancer. The deubiquitylating enzyme USP18 is a major negative regulator of the IFN signalling cascade and is the predominant human protease that cleaves ISG15, a ubiquitin-like protein tightly regulated in the context of innate immunity, from its modified substrate proteins in vivo. Methods In this study, using advanced proteomic techniques, we have significantly expanded the USP18-dependent ISGylome and proteome in a chronic myeloid leukaemia (CML)-derived cell line. USP18-dependent effects were explored further in CML and colorectal carcinoma cellular models. Results Novel ISGylation targets were characterised that modulate the sensing of innate ligands, antigen presentation and secretion of cytokines. Consequently, CML USP18-deficient cells are more antigenic, driving increased activation of cytotoxic T lymphocytes (CTLs) and are more susceptible to irradiation. Conclusions Our results provide strong evidence for USP18 in regulating antigenicity and radiosensitivity, highlighting its potential as a cancer target

    A proximity-dependent biotinylation map of a human cell

    No full text
    International audienceCompartmentalization is a defining characteristic of eukaryotic cells, and partitions distinct biochemical processes into discrete subcellular locations. Microscopy(1) and biochemical fractionation coupled with mass spectrometry(2-4) have defined the proteomes of a variety of different organelles, but many intracellular compartments have remained refractory to such approaches. Proximity-dependent biotinylation techniques such as BioID provide an alternative approach to define the composition of cellular compartments in living cells(5-7). Here we present a BioID-based map of a human cell on the basis of 192 subcellular markers, and define the intracellular locations of 4,145 unique proteins in HEK293 cells. Our localization predictions exceed the specificity of previous approaches, and enabled the discovery of proteins at the interface between the mitochondrial outer membrane and the endoplasmic reticulum that are crucial for mitochondrial homeostasis. On the basis of this dataset, we created humancellmap.org as a community resource that provides online tools for localization analysis of user BioID data, and demonstrate how this resource can be used to understand BioID results better

    Translation of cytoplasmic UBA1 contributes to VEXAS syndrome pathogenesis

    No full text
    Somatic mutations in UBA1 cause VEXAS (Vacuoles, E1 ubiquitin activating enzyme, X-linked, Autoinflammatory Somatic) syndrome, an adult-onset inflammatory disease with an overlap of hematologic manifestations. VEXAS syndrome is characterized by a high mortality rate and significant clinical heterogeneity. We sought to determine independent predictors of survival in VEXAS and to understand the mechanistic basis for these factors. We analyzed 83 patients with somatic pathogenic variants in UBA1 at p.Met41 (p.Met41Leu/Thr/Val), the start codon for translation of the cytoplasmic isoform of UBA1 (UBA1b). Patients with the p.Met41Val genotype were most likely to have an undifferentiated inflammatory syndrome. Multivariate analysis showed ear chondritis was associated with increased survival, while transfusion dependence and the p.Met41Val variant were independently associated with decreased survival. Using in vitro models and patient-derived cells, we demonstrate that p.Met41Val variant supports less UBA1b translation than either p.Met41Leu or p.Met41Thr, providing a molecular rationale for decreased survival. In addition, we show that these three canonical VEXAS variants produce more UBA1b than any of the six other possible single nucleotide variants within this codon. Finally, we report a patient, clinically diagnosed with VEXAS syndrome, with two novel mutations in UBA1 occurring in cis on the same allele. One mutation (c.121 A>T; p.Met41Leu) caused severely reduced translation of UBA1b in a reporter assay, but co-expression with the second mutation (c.119 G>C; p.Gly40Ala) rescued UBA1b levels to those of canonical mutations. We conclude that regulation of residual UBA1b translation is fundamental to the pathogenesis of VEXAS syndrome and contributes to disease prognosis
    corecore