35 research outputs found

    Bioinspired Magneto-optical Bacteria

    Get PDF
    “Two-in-one” magneto-optical bacteria have been produced using the probiotic Lactobacillus fermentum for the first time. We took advantage of two features of bacteria to synthesize this novel and bifunctional nanostructure: their metal-reducing properties, to produce gold nanoparticles, and their capacity to incorporate iron oxide nanoparticles at their external surface. The magneto-optical bacteria survive the process and behave as a magnet at room temperature.This work was funded by Biosearch S.A. (POSTBIO project-Agency for Innovation and Development of Andalucia IDEA) and by MINECO and FEDER (project CTQ2012-32236)

    Impact of cross-section uncertainties on supernova neutrino spectral parameter fitting in the Deep Underground Neutrino Experiment

    Get PDF
    A primary goal of the upcoming Deep Underground Neutrino Experiment (DUNE) is to measure the O(10)\mathcal{O}(10) MeV neutrinos produced by a Galactic core-collapse supernova if one should occur during the lifetime of the experiment. The liquid-argon-based detectors planned for DUNE are expected to be uniquely sensitive to the Îœe\nu_e component of the supernova flux, enabling a wide variety of physics and astrophysics measurements. A key requirement for a correct interpretation of these measurements is a good understanding of the energy-dependent total cross section σ(EÎœ)\sigma(E_\nu) for charged-current Îœe\nu_e absorption on argon. In the context of a simulated extraction of supernova Îœe\nu_e spectral parameters from a toy analysis, we investigate the impact of σ(EÎœ)\sigma(E_\nu) modeling uncertainties on DUNE's supernova neutrino physics sensitivity for the first time. We find that the currently large theoretical uncertainties on σ(EÎœ)\sigma(E_\nu) must be substantially reduced before the Îœe\nu_e flux parameters can be extracted reliably: in the absence of external constraints, a measurement of the integrated neutrino luminosity with less than 10\% bias with DUNE requires σ(EÎœ)\sigma(E_\nu) to be known to about 5%. The neutrino spectral shape parameters can be known to better than 10% for a 20% uncertainty on the cross-section scale, although they will be sensitive to uncertainties on the shape of σ(EÎœ)\sigma(E_\nu). A direct measurement of low-energy Îœe\nu_e-argon scattering would be invaluable for improving the theoretical precision to the needed level.Comment: 25 pages, 21 figure

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    Mixed Mode Chromatography, Complex Development for Large Opportunities

    No full text
    Mixed mode chromatography resins with salt tolerance, large design space and orthogonal selectivity requires a slightly more complex development than traditional resins. It is important to screen several ligands and several binding and elution conditions. This allows taking full advantage of these resins. High-Throughput Screening (HTS) for Process Development should be done with the help of Design of Experiment (DoE). It could be performed in filter plates or Robocolumns, and assisted by liquid handling automated workstation. Modeling of the results allows the choice of optimal parameters that can then be validated and scaled up. All this leads to a better knowledge and robustness of the purification step
    corecore