80 research outputs found

    Recycling belite cement clinker from post-demolition autoclaved aerated concrete – assessing a new process

    Get PDF
    Increasing post-demolition autoclaved aerated concrete (pd-AAC) waste is mainly landfilled due to its physical properties and lacking recycling processes. A promising technology is the production of recycled belite cement clinker, which can partially substitute Portland cement clinker. This paper presents experimental data of recycled belite cement clinker production from pd-AAC that has been successfully demonstrated on technology readiness level 4–5 and its associated lifecycle assessment. Different supply chains for pd-AAC and energy are examined. The closed-loop pd-AAC recycling via the belite route that aims for Portland cement clinker substitution shows significant potential savings in environmental impacts. These savings could reach 0.77 kg CO2-Eq/kg pd-AAC compared to the status quo (landfilling) by using renewable electricity, and 0.34 kg CO2-Eq/kg pd-AAC by using natural gas. The gained reduction of around 13.5 % is significant considering that it is the result of substituting only 15.5 % of the overall input material

    A long-term perspective on deforestation rates in the Brazilian Amazon

    Get PDF
    Monitoring tropical forest cover is central to biodiversity preservation, terrestrial carbon stocks, essential ecosystem and climate functions, and ultimately, sustainable economic development. The Amazon forest is the Earth’s largest rainforest, and despite intensive studies on current deforestation rates, relatively little is known as to how these compare to historic (pre 1985) deforestation rates. We quantified land cover change between 1975 and 2014 in the so-called Arc of Deforestation of the Brazilian Amazon, covering the southern stretch of the Amazon forest and part of the Cerrado biome. We applied a consistent method that made use of data from Landsat sensors: Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+) and Operational Land Imager (OLI). We acquired suitable images from the US Geological Survey (USGS) for five epochs: 1975, 1990, 2000, 2010, and 2014. We then performed land cover analysis for each epoch using a systematic sample of 156 sites, each one covering 10 km × 10 km, located at the confluence point of integer degree latitudes and longitudes. An object-based classification of the images was performed with five land cover classes: tree cover, tree cover mosaic, other wooded land, other land cover, and water. The automatic classification results were corrected by visual interpretation, and, when available, by comparison with higher resolution imagery. Our results show a decrease of forest cover of 24.2% in the last 40 years in the Brazilian Arc of Deforestation, with an average yearly net forest cover change rate of -0.71% for the 39 years considered

    Global tropical forest cover change assessment with medium spatial stellite imagery using a systematic sample grid - data, methods and first results.

    Get PDF
    At the Joint Research Centre (JRC) of the European Commission, a methodology has been developed to monitor the pan-tropical forest cover with remote sensing data for the years 1990-2000-2005 in Latin America, Southeast Asia and Africa on the basis of over 4000 sample units sample units with a dimension of 20 km by 20 km located at every full latitude and longitude degree confluence. From the Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM) instruments, images with low cloud impact from the epochs around the years 1990, 2000 and 2005 were selected and subsets covering the sample units were cut-out, pre-processed, segmented and classified in five different land cover classes in order to build global and regional statistics on tropical forest cover change. The data was validated in three steps, internal correction of wrongly classified objects, external (national or regional) expert validation and internal harmonization of the data. In this paper, the data collection and the workflow of the forest cover change assessment for the epochs 1990 and 2000 is presented. Parts of the results for the Brazilian Amazon have been validated by comparing with interpretations of corresponding samples carried out by the Instituto Nacional de Pesquisas Espaciais (INPE), showing a very high correlation. Further, the figure produced by INPE through the PRODES program on gross deforestation for the years 1990-2000 was compared to the figure calculated on basis of the JRC results for the respective area, where the JRC estimate that was ca. 10% higher than the INPE estimate

    Forest Cover Changes in Tropical South and Central America from 1990 to 2005 and Related Carbon Emissions and Removals.

    Get PDF
    This paper outlines the methods and results for monitoring forest change and resulting carbon emissions for the 1990-2000 and 200-2005 periods carried out over tropical Central and South America. To produce our forest change estimates we used a systematic sample of medium resolution satellite data processed to forest change maps covering 1230 sites of 20 km by 20 km, each located at the degree confluence. Biomass data were spatially associated to each individual sample site so that annual carbon emissions could be estimated. For our study area we estimate that forest cover in the study area had fallen from 763 Mha (s.e. 10 Mha) in 1990 to 715 Mha (s.e. 10 Mha) in 2005. During the same period other wooded land (i.e., non-forest woody vegetation) had fallen from 191 Mha (s.e. 5.5 Mha) to 184 Mha (s.e. 5.5 Mha). This equates to an annual gross loss of 3.74 Mha·y−1 of forests (0.50% annually) between 1990 and 2000, rising to 4.40 Mha·y−1 in the early 2000s (0.61% annually), with Brazil accounting for 69% of the total losses. The annual carbon emissions from the combined loss of forests and other wooded land were calculated to be 482 MtC·y−1 (s.e. 29 MtC·y−1) for the 1990s, and 583 MtC·y−1 (s.e. 48 MtC·y−1) for the 2000 to 2005 period. Our maximum estimate of sinks from forest regrowth in tropical South America is 92 MtC·y−1. These estimates of gross emissions correspond well with the national estimates reported by Brazil, however, they are less than half of those reported in a recent study based on the FAO country statistics, highlighting the need for continued research in this area

    The potential for operational monitoring of selectively logged forest using vegetation index in the brazilian Amazon.

    Get PDF
    This work presents a approach for monitoring forest degradation in the Brazilian Amazon using a multi-temporal dataset of Landsat-8 imagery. We use a Normalized Burned Ratio (NBR) for detecting selective logging in two differents areas in the Brazilian Amazon, Acre State and the Roraima State. The proposed approach can be used for monitoring forest degradation to availability the vegetation indice using the proposed method and facilitating the implementation of action of forest protection in the Brazilian Amazon.Editores: Douglas Francisco Marcolino Gherardi; Ieda Del'Arco Sanches; Luiz Eduardo Oliveira e Cruz de Aragão

    Land cover changes in the Brazilian Cerrado and Caatinga biomes from 1990 to 2010 based on a systematic remote sensing sampling approach

    Get PDF
    Abstract - The main objective of our study was to provide consistent information on land cover changes between the years 1990 and 2010 for the Cerrado and Caatinga Brazilian seasonal biomes. These areas have been overlooked in terms of land cover change assessment if compared with efforts in monitoring the Amazon rain forest. For each of the target years (1990, 2000 and 2010) land cover information was obtained through an object-based classification approach for 243 sample units (10 km × 10 km size), using (E)TM Landsat images systematically located at each full degree confluence of latitude and longitude. The images were automatically pre-processed, segmented and labelled according to the following legend: Tree Cover (TC), Tree Cover Mosaic (TCM), Other Wooded Land (OWL), Other Land Cover (OLC) and Water (W). Our results indicate the Cerrado and Caatinga biomes lost (gross loss) respectively 265,595 km2 and 89,656 km2 of natural vegetation (TC + OWL) between 1990 and 2010. In the same period, these areas also experienced gain of TC and OWL. By 2010, the percentage of natural vegetation cover remaining in the Cerrado was 47% and in the Caatinga 63%. The annual (net) rate of natural vegetation cover loss in the Cerrado slowed down from ?0.79% yr?1 to ?0.44% yr?1 from the 1990s to the 2000s, while in the Caatinga for the same periods the rate increased from ?0.19% yr?1 to ?0.44% yr?1. In summary, these Brazilian biomes experienced both loss and gains of Tree Cover and Other Wooded Land; however a continued net loss of natural vegetation was observed for both biomes between 1990 and 2010. The average annual rate of change in this period was higher in the Cerrado (?0.6% yr?1) than in the Caatinga (?0.3% yr?1)

    Pcl-PRC2 is needed to generate high levels of H3-K27 trimethylation at Polycomb target genes

    Get PDF
    PRC2 is thought to be the histone methyltransferase (HMTase) responsible for H3-K27 trimethylation at Polycomb target genes. Here we report the biochemical purification and characterization of a distinct form of Drosophila PRC2 that contains the Polycomb group protein polycomblike (Pcl). Like PRC2, Pcl-PRC2 is an H3-K27-specific HMTase that mono-, di- and trimethylates H3-K27 in nucleosomes in vitro. Analysis of Drosophila mutants that lack Pcl unexpectedly reveals that Pcl-PRC2 is required to generate high levels of H3-K27 trimethylation at Polycomb target genes but is dispensable for the genome-wide H3-K27 mono- and dimethylation that is generated by PRC2. In Pcl mutants, Polycomb target genes become derepressed even though H3-K27 trimethylation at these genes is only reduced and not abolished, and even though targeting of the Polycomb protein complexes PhoRC and PRC1 to Polycomb response elements is not affected. Pcl-PRC2 is thus the HMTase that generates the high levels of H3-K27 trimethylation in Polycomb target genes that are needed to maintain a Polycomb-repressed chromatin state

    Saltatory remodeling of Hox chromatin in response to rostrocaudal patterning signals

    Get PDF
    Hox genes controlling motor neuron subtype identity are expressed in rostrocaudal patterns that are spatially and temporally collinear with their chromosomal organization. Here we demonstrate that Hox chromatin is subdivided into discrete domains that are controlled by rostrocaudal patterning signals that trigger rapid, domain-wide clearance of repressive histone H3 Lys27 trimethylation (H3K27me3) polycomb modifications. Treatment of differentiating mouse neural progenitors with retinoic acid leads to activation and binding of retinoic acid receptors (RARs) to the Hox1–Hox5 chromatin domains, which is followed by a rapid domain-wide removal of H3K27me3 and acquisition of cervical spinal identity. Wnt and fibroblast growth factor (FGF) signals induce expression of the Cdx2 transcription factor that binds and clears H3K27me3 from the Hox1–Hox9 chromatin domains, leading to specification of brachial or thoracic spinal identity. We propose that rapid clearance of repressive modifications in response to transient patterning signals encodes global rostrocaudal neural identity and that maintenance of these chromatin domains ensures the transmission of positional identity to postmitotic motor neurons later in development.Leona M. and Harry B. Helmsley Charitable TrustNational Institutes of Health (U.S.) (Grant P01 NS055923)Smith Family Foundatio

    MICALs in control of the cytoskeleton, exocytosis, and cell death

    Get PDF
    MICALs form an evolutionary conserved family of multidomain signal transduction proteins characterized by a flavoprotein monooxygenase domain. MICALs are being implicated in the regulation of an increasing number of molecular and cellular processes including cytoskeletal dynamics and intracellular trafficking. Intriguingly, some of these effects are dependent on the MICAL monooxygenase enzyme and redox signaling, while other functions rely on other parts of the MICAL protein. Recent breakthroughs in our understanding of MICAL signaling identify the ability of MICALs to bind and directly modify the actin cytoskeleton, link MICALs to the docking and fusion of exocytotic vesicles, and uncover MICALs as anti-apoptotic proteins. These discoveries could lead to therapeutic advances in neural regeneration, cancer, and other diseases
    corecore