14 research outputs found

    Galaxy Orbits for Galaxy Clusters in Sloan Digital Sky Survey and 2dF Galaxy Redshift Survey

    Full text link
    We present the results of a study for galaxy orbits in galaxy clusters using a spectroscopic sample of galaxies in Sloan Digital Sky Survey (SDSS) and 2dF Galaxy Redshift Survey (2dFGRS). We have determined the member galaxies of Abell clusters covered by these surveys using the galaxies' redshift and positional data. We have selected 10 clusters using three criteria: the number of member galaxies is greater than or equal to 40, the spatial coverage is complete, and X-ray mass profile is available in the literature. We derive the radial profile of the galaxy number density and velocity dispersion using all, early-type, and late-type galaxies for each cluster. We have investigated the galaxy orbits for our sample clusters with constant and variable velocity anisotropies over the clustercentric distance using Jeans equation. Using all member galaxies, the galaxy orbits are found to be isotropic within the uncertainty for most of sample clusters, although it is difficult to conclude strongly for some clusters due the large errors and the variation as a function of the clustercentric distance in the calculated velocity anisotropies. We investigated the orbital difference between early-type and late-type galaxies for four sample clusters, and found no significant difference between them.Comment: 59 pages, 21 figures. To appear in ApJ. Paper with high resolution figures are available at http://astro.kias.re.kr/~hshwang/papers/orbit.pd

    Substructure lensing in galaxy clusters as a constraint on low-mass sterile neutrinos in tensor-vector-scalar theory: The straight arc of Abell 2390

    Full text link
    Certain covariant theories of the modified Newtonian dynamics paradigm seem to require an additional hot dark matter (HDM) component - in the form of either heavy ordinary neutrinos or more recently light sterile neutrinos (SNs) with a mass around 11eV - to be relieved of problems ranging from cosmological scales down to intermediate ones relevant for galaxy clusters. Here we suggest using gravitational lensing by galaxy clusters to test such a marriage of neutrino HDM and modified gravity, adopting the framework of tensor-vector-scalar theory (TeVeS). Unlike conventional cold dark matter (CDM), such HDM is subject to strong phase-space constraints, which allows one to check cluster lens models inferred within the modified framework for consistency. Since the considered HDM particles cannot collapse into arbitrarily dense clumps and only form structures well above the galactic scale, systems which indicate the need for dark substructure are of particular interest. As a first example, we study the cluster lens Abell 2390 and its impressive straight arc with the help of numerical simulations. Based on our results, we outline a general and systematic approach to model cluster lenses in TeVeS which significantly reduces the calculation complexity. We further consider a simple bimodal lens configuration, capable of producing the straight arc, to demonstrate our approach. We find that such a model is marginally consistent with the hypothesis of 11eV SNs. Future work including more detailed and realistic lens models may further constrain the necessary SN distribution and help to conclusively assess this point. Cluster lenses could therefore provide an interesting discriminator between CDM and such modified gravity scenarios supplemented by SNs or other choices of HDM.Comment: 22 pages, 14 figures, 2 tables; minor changes to match accepted versio

    CLASH-VLT: The mass, velocity-anisotropy, and pseudo-phase-space density profiles of the z

    Full text link

    The Merger in Abell 576: A Line‐of‐Sight Bullet Cluster?

    No full text
    Using a combination of Chandra and XMM observations, we confirmed the presence of a significant velocity gradient along the NE/E-W/SW direction in the intracluster gas of the cluster Abell 576. The results are consistent with a previous ASCA SIS analysis of this cluster. The error weighted average over ACIS-S3, EPIC MOS 1 & 2 spectrometers for the maximum velocity difference is >3.3E03 km/s at the 90% confidence level, similar to the velocity limits estimated indirectly for the "bullet" cluster (1E0657-56). The probability that the velocity gradient is generated by standard random gain fluctuations with Chandra and XMM is <0.1%. The regions of maximum velocity gradient are in CCD zones that have the lowest temporal gain variations. It is unlikely that the velocity gradient is due to Hubble distance differences between projected clusters (probability<~0.01%). We mapped the distribution of elemental abundance ratios across the cluster and detected a strong chemical discontinuity using the abundance ratio of silicon to iron, equivalent to a variation from 100% SN Ia iron mass fraction in the West-Northwest regions to 32% in the Eastern region. The "center" of the cluster is located at the chemical discontinuity boundary, which is inconsistent with the radially symmetric chemical gradient found in some regular clusters, but consistent with a cluster merging scenario. We predict that the velocity gradient as measured will produce a variation of the CMB temperature towards the East of the core of the cluster that will be detectable by current and near-future bolometers. The measured velocity gradient opens for the possibility that this cluster is passing through a near line-of-sight merger stage where the cores have recently crossed.Comment: 24 pages, 2 tables and 20 figures; accepted for publication in the Astrophysical Journal. For full version with all figures click on http://www.astro.lsa.umich.edu/~rdupke/a576_web.pd

    Elektrokrampftherapie

    No full text

    Stabilization of Nanoscale Quasi-Liquid Interfacial Films in Inorganic Materials: A Review and Critical Assessment

    No full text
    corecore