276 research outputs found

    Capsule formation around breast implants

    Get PDF
    All implants are rapidly coated by the host with glycoproteins forming a thin capsule, and this is a normal response. Where an inflammatory stimulus such as infection is present, the capsule can thicken and become microvascularised and sometimes calcified. This inflammatory stimulus can take the form of leachable chemicals from the implant, or bacteria live or dead. The presence of live bacteria can lead to biofilm development which is part of the chronic infective, inflammatory process. Staphylococcus epidermidis and Cutibacterium acnes have been implicated in chronic infection around breast implants, and some animal models suggest their involvement in capsule contracture. Molecular methods have revealed an array of microorganisms from samples of removed capsular material, but they are extremely sensitive to contamination and the relevance of the results to capsular contracture is in doubt. There is evidence that bacteria of low virulence are associated with capsular contracture and calcification, and measures beyond those conventionally applied need to be investigated to limit perioperative contamination

    A Three-Dimensional Model of Bacterial Biofilms and Its Use in Antimicrobial Susceptibility Testing

    Get PDF
    (1) Background: The discrepant antimicrobial susceptibility between planktonic and biofilm bacterial modes poses a problem for clinical microbiology laboratories and necessitates a relevant 3D experimental model allowing bacteria to grow in biofilm mode, in vitro, for use in anti-biofilm susceptibility testing. (2) Methods: This work develops a 3D biofilm model consisting of alginate beads containing S. aureus biofilm and encased within two thick layers of alginate matrix. The constructed model was placed on a thin Boyden chamber insert suspended on a 24-well culture plate containing the culture medium. The antibacterial activity of bacitracin and chlorhexidine digluconate (CD), either combined or separately, against 2D S. aureus culture was compared to that in the 3D biofilm model. Quantitative analysis and imaging analysis were performed by assessing the bacterial load within the matrix as well as measuring the optical density of the culture medium nourishing the matrix. (3) Results: The 3D biofilm model represented the typical complex characteristics of biofilm with greater insusceptibility to the tested antimicrobials than the 2D culture. Only bacitracin and CD in combination at 100× the concentration found to be successful against 2D culture were able to completely eliminate the 3D biofilm matrix. (4) Conclusions: The 3D biofilm model, designed to be more clinically relevant, exhibits higher antimicrobial insusceptibility than the 2D culture, demonstrating that the model might be useful for testing and discovering new antimicrobial therapies. The data also support the view that combination therapy might be the optimal approach to combat biofilm infections

    Prevention of Neural Tube Defects: A Cross-Sectional Study of the Uptake of Folic Acid Supplementation in Nearly Half a Million Women

    Get PDF
    BACKGROUND: Taking folic acid supplements before pregnancy to reduce the risk of a neural tube defect (NTD) is especially important in countries without universal folic acid fortification. The extent of folic acid supplementation among women who had antenatal screening for Down's syndrome and NTDs at the Wolfson Institute of Preventive Medicine, London between 1999 and 2012 was assessed. METHODS AND FINDINGS: 466,860 women screened provided details on folic acid supplementation. The proportion of women who took folic acid supplements before pregnancy was determined according to year and characteristics of the women. The proportion of women taking folic acid supplements before pregnancy declined from 35% (95% CI 34%-35%) in 1999-2001 to 31% (30%-31%) in 2011-2012. 6% (5%-6%) of women aged under 20 took folic acid supplements before pregnancy compared with 40% of women aged between 35 and 39. Non-Caucasian women were less likely to take folic acid supplements before pregnancy than Caucasian women; Afro-Caribbean 17% (16%-17%), Oriental 25% (24%-25%) and South Asian 20% (20%-21%) compared with 35% (35%-35%) for Caucasian women. 51% (48%-55%) of women who previously had an NTD pregnancy took folic acid supplements before the current pregnancy. CONCLUSIONS: The policy of folic acid supplementation is failing and has led to health inequalities. This study demonstrates the need to fortify flour and other cereal grain with folic acid in all countries of the world

    Do antibiotic-impregnated shunts in hydrocephalus therapy reduce the risk of infection? An observational study in 258 patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Shunt infection in hydrocephalus patients is a severe, even life-threatening complication. Antibiotic-impregnated shunts (AIS) have been developed in an attempt to reduce rate of shunt infection. The study was performed to analyze if AIS can diminish the rate of shunt infection. The pathogenic nature of shunt infection in patients with AIS systems and those without antibiotic impregnated shunts (non-AIS) was compared.</p> <p>Methods</p> <p>Over a period of 24 months in the Department of Neurosurgery at University Hospital of Tübingen shunt surgery was performed in 258 patients. In 86 patients AIS systems were implanted. Shunt catheters were commercially impregnated with clindamycin and rifampicin. Analysis of the clinical data included sex, age, classification of hydrocephalus, shunt types and risk factors for shunt infection [age (< 1 year and > 80 years), prematurely born patients, external ventricular drainage, former shunt infection, former systemic infection, disturbance of consciousness, former radiation-/chemotherapy]. Infection rates and underlying bacterial pathogens of patients with AIS were compared to patients with implanted non-AIS systems (172 patients).</p> <p>Results</p> <p>AIS and non-AIS patients did not differ in sex, etiology of hydrocephalus and the shunt type. In the AIS group 72 out of 86 patients had at least one risk factor (83.7 %), compared to 126 patients in the non-AIS group (73.3 %). There was no significant difference between the two groups (p = 0.0629; Fisher's exact test). In patients with no risk factors, only one patient with non-AIS suffered from shunt infection. In patients with one or more risk factors the rate for shunt infection was 7.14 % in patients with non-AIS and 6.94 % in patients with AIS. Former shunt infection (p = 0.0124) was related to higher risk for shunt infection. The use of AIS had therefore no significant advantage (p = 0.8611; multiple logistic regression).</p> <p>Significantly related to a shunt infection was the number of shunt surgeries. 190 interventions in the AIS group (2.21 interventions per patient) and 408 in the non-AIS group (2.37 interventions per patient) had been performed (p = 0.3063; Wilcoxon). There was no shunt infection in the group of patients on whom only one shunt surgery was performed. In patients with at least two shunt surgeries the infection rate was 9%. The infection rate in AIS patients was 5/52 (9.6 %) and in the non-AIS 10/114 (8.77 %), (p = 1.0; Fisher's exact test). Staphylococcus epidermidis was the most frequent pathogen for shunt infection. Fourteen out of 15 infections occurred within the first 6 months of surgery. The most frequent pathogen for shunt infection was S. epidermidis. No toxic or allergic complications were seen using the AIS shunt systems. The presented data show a remarkably low infection rate of 5.8 % in the non-AIS group compared to other studies which demonstrated a significant decrease in the infection rate by AIS.</p> <p>Conclusion</p> <p>AIS did not significantly reduce shunt infection in hydrocephalus patients in the presented study. In the AIS group three patients suffered from shunt infections caused by skin ulceration or neurosurgical procedures with exposure of the cerebrospinal liquor after shunt implantation. AIS was not developed to prevent infection in such cases, therefore an advantage of AIS can not be excluded. In view of the presented data and the small number of reported studies a prospective randomized multicenter study is required.</p

    Validation and assessment of an antibiotic-based, aseptic decontamination manufacturing protocol for therapeutic, vacuum-dried human amniotic membrane

    Get PDF
    © 2019, The Author(s). Amniotic membrane (AM) is used to treat a range of ophthalmic indications but must be presented in a non-contaminated state. AM from elective caesarean sections contains natural microbial contamination, requiring removal during processing protocols. The aim of this study was to assess the ability of antibiotic decontamination of AM, during processing by innovative low-temperature vacuum-drying. Bioburden of caesarean section AM was assessed, and found to be present in low levels. Subsequently, the process for producing vacuum-dried AM (VDAM) was assessed for decontamination ability, by artificially loading with Staphylococcus epidermidis at different stages of processing. The protocol was highly efficient at removing bioburden introduced at any stage of processing, with antibiotic treatment and drying the most efficacious steps. The antibacterial activity of non-antibiotic treated AM compared to VDAM was evaluated using minimum inhibitory/biocidal concentrations (MIC/MBC), and disc diffusion assays against Meticillin-resistant Staphylococcus aureus, Meticillin-resistant S. epidermidis, Escherichia coli, Pseudomonas aeruginosa and Enterococcus faecalis. Antibacterial activity without antibiotic was low, confirmed by high MIC/MBC, and a no inhibition on agar lawns. However, VDAM with antibiotic demonstrated effective antibacterial capacity against all bacteria. Therefore, antibiotic decontamination is a reliable method for sterilisation of AM and the resultant antibiotic reservoir is effective against gram-positive and –negative bacteria

    Deciphering the contribution of biofilm to the pathogenesis of peritoneal dialysis infections: characterization and microbial behaviour on dialysis fluids

    Get PDF
    Infections are major complications in peritoneal dialysis (PD) with a multifactorial etiology that comprises patient, microbial and dialytic factors. This study aimed at investigating the contribution of microbial biofilms on PD catheters to recalcitrant infections and their interplay with PD related-factors. A prospective observational study was performed on 47 patients attending Centro Hospitalar of Porto and Vila Nova de Gaia/Espinho to whom the catheter was removed due to infectious (n = 16) and non-infectious causes (n = 31). Microbial density on the catheter was assessed by culture methods and the isolated microorganisms identified by matrix-assisted laser desorption/ionization time-of-flight intact cell mass spectrometry. The effect of conventional and three biocompatible PD solutions on 16 Coagulase Negative Staphylococci (CNS) and 10 Pseudomonas aeruginosa strains planktonic growth and biofilm formation was evaluated. Cultures were positive in 87.5% of the catheters removed due infectious and 90.3% removed due to non-infectious causes. However, microbial yields were higher on the cuffs of catheters removed due to infection vs. non-infection. Staphylococci (CNS and Staphylococcus aureus) and P. aeruginosa were the predominant species: 32% and 20% in the infection and 43.3% and 22.7% in the non-infection group, respectively. In general, PD solutions had a detrimental effect on planktonic CNS and P. aeruginosa strains growth. All strains formed biofilms in the presence of PD solutions. The solutions had a more detrimental effect on P. aeruginosa than CNS strains. No major differences were observed between conventional and biocompatible solutions, although in icodextrin solution biofilm biomass was lower than in bicarbonate/lactate solution. Overall, we show that microbial biofilm is universal in PD catheters with the subclinical menace of Staphylococci and P. aeruginosa. Cuffs colonization may significantly contribute to infection. PD solutions differentially impact microbial species. This knowledge is important for the development of infection diagnosis, treatment and preventive strategies.This work received support from a Sociedade Portuguesa de Nefrologia (http://www.spnefro.pt) research grant to AR and a Fundação para a Ciência e Tecnologia (http://www.fct.pt) post doc grant (SFRH/BPD/73663/2010) to MM. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Control of Propionibacterium acnes by natural antimicrobial substances: Role of the bacteriocin AS-48 and lysozyme

    Get PDF
    We report the high susceptibility of several clinical isolates of Propionibacterium acnes from different sources (skin, bone, wound exudates, abscess or blood contamination) to the head-to-tail cyclized bacteriocin AS-48. This peptide is a feasible candidate for further pharmacological development against this bacterium, due to its physicochemical and biological characteristics, even when it is growing in a biofilm. Thus, the treatment of pre-formed biofilms with AS-48 resulted in a dose- and time-dependent disruption of the biofilm architecture beside the decrease of bacterial viability. Furthermore, we demonstrated the potential of lysozyme to bolster the inhibitory activity of AS-48 against P. acnes, rendering high reductions in the MIC values, even in matrix-growing cultures, according to the results obtained using a range of microscopy and bioassay techniques. The improvement of the activity of AS-48 through its co-formulation with lysozyme may be considered an alternative in the control of P. acnes, especially after proving the absence of cytotoxicity demonstrated by these natural compounds on relevant human skin cell lines. In summary, this study supports that compositions comprising the bacteriocin AS-48 plus lysozyme must be considered as promising candidates for topical applications with medical and pharmaceutical purposes against dermatological diseases such as acne vulgaris.This research was funded by a grant from the Spanish Ministry of Economy and Competitiveness (SAF2013-48971-C2-1-R that included funds from European Regional Development, ERDF), and the Research Group General (BIO160, UGR)

    Sonication is superior to scraping for retrieval of bacteria in biofilm on titanium and steel surfaces in vitro

    Get PDF
    Background and purpose Low-virulence implant infections are characterized by bacterial colonization of the implant with subsequent biofilm formation. In these cases, soft tissue biopsies often prove to be culture negative. Consequently, detachment of the causative adherent bacteria is crucial for correct microbiological diagnosis. Using an in vitro model, we compared 4 methods of biofilm sampling from metal surfaces

    Combinatorial discovery of polymers resistant to bacterial attachment

    Get PDF
    Bacterial attachment and subsequent biofilm formation are key challenges to the long term performance of many medical devices. Here, a high throughput approach coupled with the analysis of surface structure-property relationships using a chemometics approach has been developed to simultaneously investigate the interaction of bacteria with hundreds of polymeric materials on a microarray format. Using this system, a new group of materials comprising ester and hydrophobic moieties are identified that dramatically reduce the attachment of clinically relevant, pathogenic bacteria (Pseudomonas aeruginosa, Staphylococcus aureus and uropathogenic Escherichia coli). Hit materials coated on silicone catheters resulted in up to a 30 fold reduction in coverage compared to a commercial silver embedded catheter, which has been proven to half the incidence of clinically acquired infection. These polymers represent a new class of materials resistant to bacterial attachment that could not have been predicted from the current understanding of bacteria-surface interactions
    corecore