46 research outputs found

    Parallel use of shake flask and microtiter plate online measuring devices (RAMOS and BioLector) reduces the number of experiments in laboratory-scale stirred tank bioreactors

    Get PDF
    Background Conventional experiments in small scale are often performed in a Black Box fashion, analyzing only the product concentration in the final sample. Online monitoring of relevant process characteristics and parameters such as substrate limitation, product inhibition and oxygen supply is lacking. Therefore, fully equipped laboratory-scale stirred tank bioreactors are hitherto required for detailed studies of new microbial systems. However, they are too spacious, laborious and expensive to be operated in larger number in parallel. Thus, the aim of this study is to present a new experimental approach to obtain dense quantitative process information by parallel use of two small-scale culture systems with online monitoring capabilities: Respiration Activity MOnitoring System (RAMOS) and the BioLector device. Results The same mastermix (medium plus microorganisms) was distributed to the different small-scale culture systems: 1) RAMOS device; 2) 48-well microtiter plate for BioLector device; and 3) separate shake flasks or microtiter plates for offline sampling. By adjusting the same maximum oxygen transfer capacity (OTRmax), the results from the RAMOS and BioLector online monitoring systems supplemented each other very well for all studied microbial systems (E. coli, G. oxydans, K. lactis) and culture conditions (oxygen limitation, diauxic growth, auto-induction, buffer effects). Conclusions The parallel use of RAMOS and BioLector devices is a suitable and fast approach to gain comprehensive quantitative data about growth and production behavior of the evaluated microorganisms. These acquired data largely reduce the necessary number of experiments in laboratory-scale stirred tank bioreactors for basic process development. Thus, much more quantitative information is obtained in parallel in shorter time.Cluster of Excellence “Tailor-Made Fuels from Biomass”, which is funded by the Excellence Initiative by the German federal and state governments to promote science and research at German universities

    Relationship between knee and ankle degeneration in a population of organ donors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteoarthritis (OA) is a progressive degenerative condition of synovial joints in response to both internal and external factors. The relationship of OA in one joint of an extremity to another joint within the same extremity, or between extremities, has been a topic of interest in reference to the etiology and/or progression of the disease.</p> <p>Methods</p> <p>The prevalence of articular cartilage lesions and osteophytes, characteristic of OA, was evaluated through visual inspection and grading in 1060 adult knee/tali pairs from 545 cadaveric joint donors.</p> <p>Results</p> <p>Joint degeneration increased more rapidly with age for the knee joint, and significantly more knee joints displayed more severe degeneration than ankle joints from as early as the third decade. Women displayed more severe knee degeneration than did men. Severe ankle degeneration did not exist in the absence of severe knee degeneration. The effect of weight on joint degeneration was joint-specific whereby weight had a significantly greater effect on the knee. Ankle grades increasingly did not match within a donor as the grade of degeneration in either the left or the right knee increased.</p> <p>Conclusions</p> <p>Gender and body type have a greater effect on knee joint integrity as compared to the ankle, suggesting that knees are more prone to internal causative effects of degeneration. We hypothesize that the greater variability in joint health between joints within an individual as disease progresses from normal to early signs of degeneration may be a result of mismatched limb kinetics, which in turn might lead to joint disease progression.</p

    Genome engineering for improved recombinant protein expression in Escherichia coli

    Get PDF
    corecore