269 research outputs found

    Preoperative surgical risk stratification in osteosarcoma based on the proximity to the major vessels

    Get PDF
    Aims The aim of this study was to determine the risk of local recurrence and survival in patients with osteosarcoma based on the proximity of the tumour to the major vessels. Patients and Methods A total of 226 patients with high-grade non-metastatic osteosarcoma in the limbs were investigated. Median age at diagnosis was 15 years (4 to 67) with the ratio of male to female patients being 1.5:1. The most common site of the tumour was the femur (n = 103) followed by tibia (n = 66). The vascular proximity was categorized based on the preoperative MRI after neoadjuvant chemotherapy into four types: type 1 > 5 mm; type 2 ≤ 5 mm, > 0 mm; type 3 attached; type 4 surrounded. Results Limb salvage rate based on the proximity type was 92%, 88%, 51%, and 0% for types 1 to 4, respectively, and the overall survival at five years was 82%, 77%, 57%, and 67%, respectively (p Conclusion The proximity of osteosarcoma to major blood vessels is a poor prognostic factor for local control and survival. Amputation offers better local control for tumours attached to the blood vessels but does not improve survival. Limb salvage surgery offers similar local control if the tumour attachment to blood vessels is limited

    Vulnerable warriors: the atmospheric marketing of military and policing equipment before and after 9/11

    Get PDF
    In this article, we analyse changes in the circulation of advertisements of policing products at security expos between 1995 and 2013. While the initial aim of the research was to evidence shifts in terrorist frames in the marketing of policing equipment before and after 9/11, our findings instead suggested that what we are seeing is the rise of marketing to police as “vulnerable warriors”, law enforcement officers in need of military weapons both for their offensive capabilities and for the protection they can offer to a police force that is always under threat

    If we build it they will come: targeting the immune response to breast cancer.

    Get PDF
    Historically, breast cancer tumors have been considered immunologically quiescent, with the majority of tumors demonstrating low lymphocyte infiltration, low mutational burden, and modest objective response rates to anti-PD-1/PD-L1 monotherapy. Tumor and immunologic profiling has shed light on potential mechanisms of immune evasion in breast cancer, as well as unique aspects of the tumor microenvironment (TME). These include elements associated with antigen processing and presentation as well as immunosuppressive elements, which may be targeted therapeutically. Examples of such therapeutic strategies include efforts to (1) expand effector T-cells, natural killer (NK) cells and immunostimulatory dendritic cells (DCs), (2) improve antigen presentation, and (3) decrease inhibitory cytokines, tumor-associated M2 macrophages, regulatory T- and B-cells and myeloid derived suppressor cells (MDSCs). The goal of these approaches is to alter the TME, thereby making breast tumors more responsive to immunotherapy. In this review, we summarize key developments in our understanding of antitumor immunity in breast cancer, as well as emerging therapeutic modalities that may leverage that understanding to overcome immunologic resistance

    miRNA signature associated with outcome of gastric cancer patients following chemotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Identification of patients who likely will or will not benefit from cytotoxic chemotherapy through the use of biomarkers could greatly improve clinical management by better defining appropriate treatment options for patients. microRNAs may be potentially useful biomarkers that help guide individualized therapy for cancer because microRNA expression is dysregulated in cancer. In order to identify miRNA signatures for gastric cancer and for predicting clinical resistance to cisplatin/fluorouracil (CF) chemotherapy, a comprehensive miRNA microarray analysis was performed using endoscopic biopsy samples.</p> <p>Methods</p> <p>Biopsy samples were collected prior to chemotherapy from 90 gastric cancer patients treated with CF and from 34 healthy volunteers. At the time of disease progression, post-treatment samples were additionally collected from 8 clinical responders. miRNA expression was determined using a custom-designed Agilent microarray. In order to identify a miRNA signature for chemotherapy resistance, we correlated miRNA expression levels with the time to progression (TTP) of disease after CF therapy.</p> <p>Results</p> <p>A miRNA signature distinguishing gastric cancer from normal stomach epithelium was identified. 30 miRNAs were significantly inversely correlated with TTP whereas 28 miRNAs were significantly positively correlated with TTP of 82 cancer patients (<it>P</it><0.05). Prominent among the upregulated miRNAs associated with chemosensitivity were miRNAs known to regulate apoptosis, including let-7g, miR-342, miR-16, miR-181, miR-1, and miR-34. When this 58-miRNA predictor was applied to a separate set of pre- and post-treatment tumor samples from the 8 clinical responders, all of the 8 pre-treatment samples were correctly predicted as low-risk, whereas samples from the post-treatment tumors that developed chemoresistance were predicted to be in the high-risk category by the 58 miRNA signature, suggesting that selection for the expression of these miRNAs occurred as chemoresistance arose.</p> <p>Conclusions</p> <p>We have identified 1) a miRNA expression signature that distinguishes gastric cancer from normal stomach epithelium from healthy volunteers, and 2) a chemoreresistance miRNA expression signature that is correlated with TTP after CF therapy. The chemoresistance miRNA expression signature includes several miRNAs previously shown to regulate apoptosis <it>in vitro</it>, and warrants further validation.</p

    Mutant PIK3CA accelerates HER2-driven transgenic mammary tumors and induces resistance to combinations of anti-HER2 therapies

    Get PDF
    Human epidermal growth factor receptor 2 (HER2; ERBB2) amplification and phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) mutations often co-occur in breast cancer. Aberrant activation of the phosphatidylinositol 3-kinase (PI3K) pathway has been shown to correlate with a diminished response to HER2-directed therapies. We generated a mouse model of HER2-overexpressing (HER2+), PIK3CAH1047R-mutant breast cancer. Mice expressing both human HER2 and mutant PIK3CA in the mammary epithelium developed tumors with shorter latencies compared with mice expressing either oncogene alone. HER2 and mutant PIK3CA also cooperated to promote lung metastases. By microarray analysis, HER2-driven tumors clustered with luminal breast cancers, whereas mutant PIK3CA tumors were associated with claudin-low breast cancers. PIK3CA and HER2+/PIK3CA tumors expressed elevated transcripts encoding markers of epithelial-to-mesenchymal transition and stem cells. Cells from HER2+/PIK3CA tumors more efficiently formed mammospheres and lung metastases. Finally, HER2+/PIK3CA tumors were resistant to trastuzumab alone and in combination with lapatinib or pertuzumab. Both drug resistance and enhanced mammosphere formation were reversed by treatment with a PI3K inhibitor. In sum, PIK3CAH1047R accelerates HER2-mediated breast epithelial transformation and metastatic progression, alters the intrinsic phenotype of HER2-overexpressing cancers, and generates resistance to approved combinations of anti-HER2 therapies

    The receptor tyrosine kinase ErbB3 maintains the balance between luminal and basal breast epithelium

    Get PDF
    ErbB3 harbors weak kinase activity, but strongly activates downstream phosphatidylinositol 3-kinase/Akt signaling through heterodimerization with and activation by other ErbB receptor tyrosine kinases. We report here that ErbB3 loss in the luminal mammary epithelium of mice impaired Akt and MAPK signaling and reduced luminal cell proliferation and survival. ERBB3 mRNA expression levels were highest in luminal mammary populations and lowest in basal cell/stem cell populations. ErbB3 loss in mammary epithelial cells shifted gene expression patterns toward a mammary basal cell/stem cell signature. ErbB3 depletion-induced gene expression changes were rescued upon activation of Akt and MAPK signaling. Interestingly, proliferation and expansion of the mammary basal epithelium (BE) occurred upon ErbB3 targeting in the luminal epithelium, but not upon its targeting in the BE. Multiple cytokines, including interleukin 6, were induced upon ErbB3 depletion in luminal epithelium cells, which increased growth of BE cells. Taken together, these results suggest that ErbB3 regulates the balance of differentiated breast epithelial cell types by regulating their growth and survival through autocrine- and paracrine-signaling mechanisms

    Chromosome 9p copy number gains involving PD-L1 are associated with a specific proliferation and immune-modulating gene expression program active across major cancer types

    Get PDF
    BACKGROUND: Inhibition of the PD-L1/PD-1 immune checkpoint axis represents one of the most promising approaches of immunotherapy for various cancer types. However, immune checkpoint inhibition is successful only in subpopulations of patients emphasizing the need for powerful biomarkers that adequately reflect the complex interaction between the tumor and the immune system. Recently, recurrent copy number gains (CNG) in chromosome 9p involving PD-L1 were detected in many cancer types including lung cancer, melanoma, bladder cancer, head and neck cancer, cervical cancer, soft tissue sarcoma, prostate cancer, gastric cancer, ovarian cancer, and triple-negative breast cancer. METHODS: Here, we applied functional genomics to analyze global mRNA expression changes associated with chromosome 9p gains. Using the TCGA data set, we identified a list of 75 genes that were strongly up-regulated in tumors with chromosome 9p gains across many cancer types. RESULTS: As expected, the gene set was enriched for chromosome 9p and in particular chromosome 9p24 (36 genes and 23 genes). Furthermore, we found enrichment of two expression programs derived from genes within and beyond 9p: one implicated in cell cycle regulation (22 genes) and the other implicated in modulation of the immune system (16 genes). Among these were specific cytokines and chemokines, e.g. CCL4, CCL8, CXCL10, CXCL11, other immunoregulatory genes such as IFN-G and IDO1 as well as highly expressed proliferation-related kinases and genes including PLK1, TTK, MELK and CDC20 that represent potential drug targets. CONCLUSIONS: Collectively, these data shed light on mechanisms of immune escape and stimulation of proliferation in cancer with PD-L1 CNG and highlight additional vulnerabilities that may be therapeutically exploitable

    Identifying Resistance Mechanisms against Five Tyrosine Kinase Inhibitors Targeting the ERBB/RAS Pathway in 45 Cancer Cell Lines

    Get PDF
    Because of the low overall response rates of 10-47% to targeted cancer therapeutics, there is an increasing need for predictive biomarkers. We aimed to identify genes predicting response to five already approved tyrosine kinase inhibitors. We tested 45 cancer cell lines for sensitivity to sunitinib, erlotinib, lapatinib, sorafenib and gefitinib at the clinically administered doses. A resistance matrix was determined, and gene expression profiles of the subsets of resistant vs. sensitive cell lines were compared. Triplicate gene expression signatures were obtained from the caArray project. Significance analysis of microarrays and rank products were applied for feature selection. Ninety-five genes were also measured by RT-PCR. In case of four sunitinib resistance associated genes, the results were validated in clinical samples by immunohistochemistry. A list of 63 top genes associated with resistance against the five tyrosine kinase inhibitors was identified. Quantitative RT-PCR analysis confirmed 45 of 63 genes identified by microarray analysis. Only two genes (ANXA3 and RAB25) were related to sensitivity against more than three inhibitors. The immunohistochemical analysis of sunitinib-treated metastatic renal cell carcinomas confirmed the correlation between RAB17, LGALS8, and EPCAM and overall survival. In summary, we determined predictive biomarkers for five tyrosine kinase inhibitors, and validated sunitinib resistance biomarkers by immunohistochemistry in an independent patient cohort. © 2013 Pénzváltó et al

    A Gene Expression Signature from Human Breast Cancer Cells with Acquired Hormone Independence Identifies MYC as a Mediator of Antiestrogen Resistance

    Get PDF
    PURPOSE: Although most patients with estrogen receptor α (ER)-positive breast cancer initially respond to endocrine therapy, many ultimately develop resistance to antiestrogens. However, mechanisms of antiestrogen resistance and biomarkers predictive of such resistance are underdeveloped. EXPERIMENTAL DESIGN: We adapted four ER+ human breast cancer cell lines to grow in an estrogen-depleted medium. A gene signature of estrogen independence was developed by comparing expression profiles of long-term estrogen-deprived (LTED) cells to their parental counterparts. We evaluated the ability of the LTED signature to predict tumor response to neoadjuvant therapy with an aromatase inhibitor, and disease outcome following adjuvant tamoxifen. We utilized Gene Set Analysis (GSA) of LTED cell gene expression profiles and a loss-of-function approach to identify pathways causally associated with resistance to endocrine therapy. RESULTS: The LTED gene expression signature was predictive of high tumor cell proliferation following neoadjuvant therapy with anastrozole and letrozole, each in different patient cohorts. This signature was also predictive of poor recurrence-free survival in two studies of patients treated with adjuvant tamoxifen. Bioinformatic interrogation of expression profiles in LTED cells revealed a signature of MYC activation. The MYC activation signature and high MYC protein levels were both predictive of poor outcome following tamoxifen therapy. Finally, knockdown of MYC inhibited LTED cell growth. CONCLUSIONS: A gene expression signature derived from ER+ breast cancer cells with acquired hormone independence predicted tumor response to aromatase inhibitors and associated with clinical markers of resistance to tamoxifen. In some cases, activation of the MYC pathway was associated with this resistance
    corecore