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Chromosome 9p copy number gains
involving PD-L1 are associated with a
specific proliferation and immune-
modulating gene expression program
active across major cancer types
Jan Budczies1,2* , Carsten Denkert1,2, Balázs Győrffy3,4, Peter Schirmacher2,5 and Albrecht Stenzinger2,5*

Abstract

Background: Inhibition of the PD-L1/PD-1 immune checkpoint axis represents one of the most promising approaches
of immunotherapy for various cancer types. However, immune checkpoint inhibition is successful only in subpopulations
of patients emphasizing the need for powerful biomarkers that adequately reflect the complex interaction between the
tumor and the immune system. Recently, recurrent copy number gains (CNG) in chromosome 9p involving PD-L1 were
detected in many cancer types including lung cancer, melanoma, bladder cancer, head and neck cancer, cervical cancer,
soft tissue sarcoma, prostate cancer, gastric cancer, ovarian cancer, and triple-negative breast cancer.

Methods: Here, we applied functional genomics to analyze global mRNA expression changes associated with chromosome
9p gains. Using the TCGA data set, we identified a list of 75 genes that were strongly up-regulated in tumors
with chromosome 9p gains across many cancer types.

Results: As expected, the gene set was enriched for chromosome 9p and in particular chromosome 9p24 (36 genes
and 23 genes). Furthermore, we found enrichment of two expression programs derived from genes within and
beyond 9p: one implicated in cell cycle regulation (22 genes) and the other implicated in modulation of the immune
system (16 genes). Among these were specific cytokines and chemokines, e.g. CCL4, CCL8, CXCL10, CXCL11, other
immunoregulatory genes such as IFN-G and IDO1 as well as highly expressed proliferation-related kinases and genes
including PLK1, TTK, MELK and CDC20 that represent potential drug targets.

Conclusions: Collectively, these data shed light on mechanisms of immune escape and stimulation of proliferation in
cancer with PD-L1 CNG and highlight additional vulnerabilities that may be therapeutically exploitable.
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Background
Programmed cell death 1 (PD-1)/PD-ligand1 (PD-L1)
checkpoint inhibition has emerged as a promising treat-
ment strategy in different advanced and often otherwise

untreatable tumors in a growing number of cancer types.
In this context immunohistochemical (IHC) evaluation of
PD-L1 protein expression has been proposed as a
biomarker that predicts treatment efficacy. However, differ-
ent IHC-antibody clones used for PD-L1 detection and dif-
ferent evaluation methods including different cutoff values
to distinguish ‘positive’ from ‘negative’ tumors introduce a
substantial variance in the determination of PD-L1 status.
These ambiguities and the complex interplay of cancer-
cell-inherent, microenvironment-associated and host-
related factors [1] advocate further investigation of the
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underlying biology to identify additional biomarkers that
aid current stratification strategies.
PD-L1 copy number gains (CNG) are prevalent in

significant subsets of different cancers including triple
negative breast cancer [2], Hodgkin’s lymphoma [3], can-
cer of unknown primary [4], NSCLC [5], SCLC [6], and
gastric cancer [7]. In particular, Hodgkin’s lymphomas
harboring PD-L1 CNG were reported to exhibit in-
creased PD-L1 expression and to respond well to im-
mune checkpoint inhibition [3]. Adding to the growing
body of evidence, enabled by The Cancer Genome Atlas
(TCGA) a recent pan-cancer analysis of almost 10,000
tumors showed that PD-L1 CNG were abundant in
many cancer types with both focal and non-focal gains
typically occurring at frequencies between 2% and 10%
[8]. In this study, we identified a 7.8-Mbp region of 38
genes located in chromosome 9p24 (core amplified
region) that is co-amplified with PD-L1 in more than
80% of tumors with focal PD-L1 gains across 22 cancer
types. The core amplified region includes the genes PD-
L1, PD-ligand 2 (PD-L2) and Janus kinase 2 (JAK2). Fol-
lowing up on these findings, we here show that chromo-
some 9p copy number gains are associated with specific
mRNA expression changes enriched for genes implicated
in cell cycle regulation and immune cell response.

Methods
PD-L1 copy number alteration (GISTIC) and genome-wide
mRNA expression data (RNAseq v2) of the following 21
cancer types profiled in the TCGA project were obtained
from the cBioPortal [9]: Bladder Urothelial Carcinoma
(BLCA), Breast invasive carcinoma (BRCA), Cervical squa-
mous cell carcinoma and endocervical adenocarcinoma
(CESC), Colorectal adenocarcinoma (COADREAD),
Glioblastoma multiforme (GBM), Head and Neck squa-
mous cell carcinoma (HNSC), Kidney renal clear cell car-
cinoma (KIRC), Kidney Renal Papillary Cell Carcinoma
(KIRP), Brain Lower Grade Glioma (LGG), Liver hepatocel-
lular carcinoma (LIHC), Lung adenocarcinoma (LUAD),
Lung squamous cell carcinoma (LUSC), Ovarian serous
cystadenocarcinoma (OV), pancreatic adenocarcinoma
(PAAD), Pheochromocytoma and Paraganglioma (PCPG),
Prostate Adenocarcinoma (PRAD), Sarcoma (SARC), Skin
Cutaneous Melanoma (SKCM), Stomach adenocarcinoma
(STAD), Papillary Thyroid Carcinoma (THCA), and Uter-
ine Corpus Endometrial Carcinoma (UCEC). All TCGA
data were freely available without restrictions on their use
in publications (https://cancergenome.nih.gov/publications/
publicationguidelines).
PD-L1 copy numbers alterations were evaluated using

the calls reported by the TCGA consortium based on
Affymetrix SNP 6.0 array data and the GISTIC 2.0 algo-
rithm [10]. PD-L1 status was assessed as “loss” for calls −2
and −1, as “normal” for call 0, and as “gain” for calls 1 and

2. Copy number calls and upper quartile normalized
RSEM estimates of mRNA expression were obtained from
the cBioPortal (http://www.cbioportal.org). Expression
values were log2(x + 1) transformed prior to statistical
analysis and visualization. Differential expression between
tumors with and without PD-L1 gains as well as between
tumors with and without PD-L1 losses was assessed using
Welch’s t-test. Hierarchical clustering was performed
using Pearson correlations as similarity measure and the
average linkage method to determine the distance between
clusters. Non-significant fold changes were set to one be-
fore clustering. In a genome-wide mRNA expression ana-
lysis, a list of 75 strongly and recurrently up-regulated
genes was identified by filtering for genes showing signifi-
cant (p < 0.05) and at least 1.5-fold enhanced mRNA ex-
pression in tumors with PD-L1 gains across at least 6
cancer types (Additional file 1: Table S1). The fold change
threshold was added to the gene selection criterion to
concentrate on strong expression changes that can be po-
tentially therapeutically targeted. Pan-cancer significance
was assessed by combining the p-values of specific cancer
types using Fisher’s method. Enrichment analysis of func-
tional categories was performed based on gene ontology
(GO) annotations obtained from msigdb v5.2 C5 (http://
software.broadinstitute.org/gsea/msigdb) with significance
assessment by Fisher’s exact test (Additional file 2: Table
S2). Among several enriched GO categories that were con-
nected with the biological motives proliferation and im-
munology the largest of these, ‘cell cycle’ (GO:0007049) and
‘immune system process’ (GO:0002376), were utilized for
annotation of the 75 genes. Statistics and graphics gener-
ation were performed using the programming language R.
Everywhere, p-values < 0.05 were considered significant.

Results
Comparing tumors with and without PD-L1 CNG in 22
cancer types, we found significant mRNA expression
changes of PD-L1 in 11 cancer types, of PD-L2 in 9 can-
cer types and of JAK2 in 15 cancer types (Table 1). Some
of the detected PD-L1 mRNA expression changes were
very high such as in lung squamous cell cancer (fold
change = 4.9), bladder cancer (fold change = 4.1), head
and neck cancer (fold change = 2.9), cervical cancer (fold
change = 2.7) and cutaneous melanoma (fold change =
2.2). Furthermore, we explored the global mRNA ex-
pression pattern of chromosome 9p using hierarchical
clustering and heatmap visualization (Fig. 1). In the 11
cancer types with significant PD-L1 mRNA expression
changes, between 124 to 342 genes (15% to 42%) located
on chromosome 9p were found to be differentially
expressed. Comparing tumors with and without PD-L1
loss, we identified 14 cancer types with significant
PD-L1 mRNA expression changes and 167 to 415 genes
(20% to 51%) with modulated mRNA expression. Genes
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showing frequent up-regulation in tumors with PD-L1
gains included PD-L1, PD-L2, JAK2, and B4GALT1.
Genes showing frequent down-regulation in tumors with
PD-L1 losses included PD-L1, PD-L2 and IFNB1.
Taking a more comprehensive approach, we analyzed

the setting ‘chromosome 9p gain’ in a genome-wide con-
text and identified 75 top genes that were strongly and
recurrently up-regulated (Fig. 2 and Additional file 1:
Table S1). In a pan-cancer analysis and after Bonferroni
correction for 22,849 genes, 74 of these were signifi-
cantly associated with 9p gain status. While 36 strongly
up-regulated genes (48%) were located on chromosome
9p (including PD-L1, PD-L2 and JAK2), the remaining
39 genes (52%) were located in other genomic regions.
In particular, 21 genes were located in the core amplified
region in chromosome 9p24 that we described in [8].
Twenty-two strongly up-regulated genes belonged to the
GO category ‘cell cycle’ (ASPM, CDC20, CDCA8,

CDKN2A, CENPA, CENPF, CENPI, CLSPN, FAM83D,
GTSE1, HAUS6, IFNG, KIF18B, KIF2C, MELK, MYBL2,
NUF2, PLK1, SPC24, TPX2, TTK, UHRF2). The vast ma-
jority of these genes play a role in the coordinated regu-
lation of microtubule assembly and chromosomal
segregation during mitosis. Sixteen strongly up-regulated
genes belonged to the GO category ‘immune system
process’ (ADAMDEC1, APLN, CCL4, CCL8, CXCL10,
CXCL11, FCGR3A, GBP5, IDO1, IFI44L, IFNG, JAK2,
KIF2C, MELK, PD-L1, PD-L2). Most of these genes en-
code cytokines and chemokines but also link immune
response with tumor metabolism, such as IDO1 encod-
ing indoleamine-2,3-dioxygenase 1. Enrichment of the
both GO categories was highly significant (cell cycle:
p = 2.5E-10, immune system process: p = 0.00096). Inter-
estingly, as shown in Fig. 2, upregulation of immune
system-related genes was particularly enriched in pros-
tate adenocarcinoma, breast cancer, cervical cancer,

Table 1 Analysis of differential mRNA expression of PD-L1, PD-L2 and JAK2 in tumors with PD-L1 CNG compared to tumors without
PD-L1 CNG

Cancer
type

PD-L1 PD-L2 JAK2

fold change p fold change p fold change p

Lusc 4.9 1.60E-27 2.3 3.80E-13 1.8 3.70E-14

Blca 4.1 7.70E-14 2.6 2.80E-06 2 3.60E-14

Hnsc 2.9 1.30E-16 2.5 1.20E-14 2.1 7.10E-19

cesc 2.7 2.50E-08 2 9.00E-05 1.9 4.90E-07

skcm 2.2 0.0073 1.5 0.12 2 0.00026

paad 2 0.14 1.6 0.5 1.3 0.23

sarc 1.9 0.0028 2.2 0.00013 1.4 0.00042

luad 1.8 0.00078 1.2 0.12 1.4 7.60E-05

prad 1.8 9.00E-04 1.6 0.002 1.4 0.00017

stad 1.8 0.0026 1 0.79 1.4 0.0061

kirc 1.7 0.18 1 0.98 1.2 0.15

ov 1.7 5.20E-07 1.3 0.034 1.6 4.40E-12

kirp 1.6 0.44 1.1 0.87 1.3 0.45

thca 1.5 0.45 1.4 0.3 1.2 0.4

gbm 1.4 0.34 1.6 0.1 1.3 0.014

ucec 1.4 0.17 1.2 0.51 1.2 0.28

brca 1.3 0.016 1.3 0.002 1.3 2.40E-05

lihc 1.2 0.52 -1 0.91 1.5 0.0083

coadread 1.1 0.62 1.1 0.59 1.3 0.00038

lgg -1 0.88 2.5 0.004 1.4 0.00027

pcpg −2.6 0.27 −1.3 0.13 −1.2 0.48

Significant changes (p<0.05) are highlighted
Investigated cancer types: Bladder Urothelial Carcinoma (BLCA), Breast invasive carcinoma (BRCA), Cervical squamous cell carcinoma and endocervical
adenocarcinoma (CESC), Colorectal adenocarcinoma (COADREAD), Glioblastoma multiforme (GBM), Head and Neck squamous cell carcinoma (HNSC), Kidney renal
clear cell carcinoma (KIRC), Kidney Renal Papillary Cell Carcinoma (KIRP), Brain Lower Grade Glioma (LGG), Liver hepatocellular carcinoma (LIHC), Lung
adenocarcinoma (LUAD), Lung squamous cell carcinoma (LUSC), Ovarian serous cystadenocarcinoma (OV), pancreatic adenocarcinoma (PAAD),
Pheochromocytoma and Paraganglioma (PCPG), Prostate Adenocarcinoma (PRAD), Sarcoma (SARC), Skin Cutaneous Melanoma (SKCM), Stomach adenocarcinoma
(STAD), Papillary Thyroid Carcinoma (THCA), and Uterine Corpus Endometrial Carcinoma (UCEC)
Bold data indicate significance (p < 0.05)
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Fig. 1 Shaping of mRNA expression of chromosome 9p by copy number alterations in chromosome 9p including PD-L1. a Heatmap showing mRNA fold
changes tumors with and without PD-L1 gain. b Heatmap showing mRNA fold changes of tumors with and without PD-L1 loss. Significant (p<0.05) changes
are highlighted as colored boxes. Genes belonging to recurrently amplified or deleted regions (as identified in [8]) are marked by a star
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squamous cell lung cancer, head and neck cancer and
bladder cancer, while genes regulating cellular prolifera-
tion were strongly expressed in glioma, papillary renal
cell carcinoma and uterine corpus endometrial carcin-
oma well as in breast cancer, prostate cancer, sarcomas,
and glioblastomas. Higher expression levels of genes on
9p were observed across most cancer types except for
papillary thyroid carcinoma as well as pheochromocy-
toma and paraganglioma.

Discussion
Functional genomics analysis of PD-L1 CNG tumors re-
vealed strong and recurrent mRNA expression changes of
genes within and outside chromosome 9p. Before, we
showed that approximately half of the PD-L1 CNGs in the
major cancer types occur together with amplification of
chromosome 9p or the entire chromosome 9 (non-focal
gains), while the other half of PD-L1 CNGs frequently co-
occurs with gain of a 38-gene core amplified region lo-
cated in chromosome 9p24 (focal gains) [8]. Here were
analyzed focal and non-focal CNGs together and identi-
fied 75 genes (21 in located the core amplified region) that
were strongly and recurrently up-regulated in PD-L1
CNG tumors. The gene set was enriched for the biological

motives ‘cell cycle’ and ‘immune system process’ and in-
cluded known drivers of tumor growth and drug targets.
A recent study showed that PD-L1 CNG is a powerful

predictive biomarker in patients with relapsed or refrac-
tory Hodgkin lymphoma who were treated with nivolu-
mab [3]. In keeping with these data, we recently
demonstrated that PD-L1 amplification accompanied by
overexpression can also be used to identify patients with
solid tumors who benefit from PD-1 blockade [4]. These
data support a view that PD-L1 CNGs could help to pre-
dict response to checkpoint inhibitors in solid tumors.
Testing for PD-L1 amplifications could be easily imple-
mented in a routine setting using in situ hybridization
based assays such as FISH or using targeted DNA se-
quencing [11]. However, prospective clinical trials and
retrospective-prospective analyses of existing clinical
trial tissue cohorts are warranted to get a comprehensive
picture on the clinical utility of PD-L1 CNGs in solid
cancer types.
Copy number and gene expression analyses uncovered

additional potential drug targets, such as amplified and
overexpressed JAK2 (Table 1), which has been implicated
in the regulation of PD-L1 expression [12] and appears to
play a role in tumor growth and resistance to

Fig. 2 Heatmap of the top list of 75 strongly and recurrent differentially expressed genes (as defined in methods) between tumors with and without
PD-L1 CNGs. Significant (p < 0.05) changes are highlighted as colored boxes. The genes are annotated to the following three groups: A = gene located
on chromosome 9p, B = gene plays a role in cell cycle regulation, C = gene is implicated in immune system processes
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chemotherapy [13]. B4GALT1 encoding β-1, 4-
Galactosyltransferase is also frequently co-amplified and
overexpressed, and has been demonstrated to mediate
multidrug resistance in leukemia cell lines [14]. PD-L2,
the gene next to PD-L2 located about 40 kbp toward the
centromere, has been demonstrated to be always co-
amplified and co-deleted with PD-L1 across major cancer
types [8]. Consistent with this result, we here found the
two genes to be co-regulated on transcriptional level in
many cancer types. PD-L2 is a second ligand for PD-L1
inhibiting T cell activation [15] and has recently been
demonstrated to be associcated with clinical outcome in
head and neck cancer independent of PD-L1 [16].
Taking a broader view, our analysis identified two

gene expression programs that were significantly as-
sociated with cancers harboring 9p gains: regulation
of cell cycle and proliferation as well as modulating
and fine tuning of immune cell response. As ex-
pected, the latter comprised PD-L1, PD-L2, and
JAK2 already discussed above. Additionally, however,
we noted a specific set of genes encoding chemo-
kines and cytokines, namely CCL4, CCL8, CXCL10,
CXCL11, IFI44L, IDO1, and IFNG that were upregu-
lated in 9p CNG cancers. Chemokines and cytokines
are well known to guide macrophages, and T-cells in-
cluding CD8-positive T-lymphocytes to the tumor
microenvironment and are associated with outcome
[17, 18]. As the RNA-seq data analyzed here were derived
from the entire tumor including its stromal and inflamma-
tory components we were unable to discern whether up-
regulated expression levels stem directly from tumor cells
or adjacent stromal cells. However, these data indicate that
cancers with 9p gains involving PD-L1 are associated with
a ‘hot microenvironment’ attracting effector cells of the im-
mune system that could eliminate tumor cells as soon as
checkpoint blockade is in place and counteracts the anergic
state. On the other hand, chemokines are known to play a
role in metastatic spread of tumor cells as they may express
CC and CXC chemokine receptors [19–21]. Together with
PD-L1 CNG that hamper successful immune attack due
to increased PD-L1 protein levels, chemokine secretion
could drive tumor survival by supporting local or distant
spread. Similarly, while IFNG exerts clear anti-
tumorigenic functions it appears to be also implicated in
tumor progression in some settings [22, 23]. Interestingly,
among the upregulated genes IDO1 encoding
indoleamine-2,3-dioxygenase 1 was identified. This en-
zyme, whose expression can be induced by IFNG [24], is
centrally involved in the degradation of tryptophan in
tumor cells whose depletion eventually results in cell cycle
arrest and apoptosis of T-cells [25–28], thus possibly sup-
porting PD-L1 CNG tumors to escape immune surveil-
lance. Conversely, this IDO1-mediated mechanism of
immune suppression can be exploited therapeutically by

inhibition of the catalytic activity of IDO1 [29] suggesting
that dual inhibition of both PD-1 and IDO1 could be a
promising approach to enhance efficacy of checkpoint
blockade. Several studies investigating dual IDO1-PD1
blockade in solid tumor types are underway and prelimin-
ary results are encouraging [30, 31].
The second expression program that we identified

in cancers with 9p gains includes genes involved in
formation of microtubules, chromosome segregation
and governing mitosis. For example, CDC20 encod-
ing cell-division cycle protein 20 homologue plays a
role in chromosome separation and transition to G1
phase after mitosis, and may be a suitable drug tar-
get [32, 33]. Similarly PLK1, which is well known to
control metaphase to anaphase transition and mitotic
exit, is upregulated in these cancers and pre-clinical
as well as clinical data collectively suggest that PLK1
inhibition can be a promising strategy in cancer
therapy [34–36]. Recently, overexpression of TTK, an-
other checkpoint in mitosis [37], was reported to occur in
triple negative breast cancers [38], which frequently har-
bor PD-L1 amplifications [2, 4]. In line with this finding,
our analysis showed upregulation of TTK across many
cancers that harbor CNG of 9p involving PD-L1. MELK
encoding maternal embryonic leucine zipper kinase ap-
pears to play a role in governing proliferation and confer-
ring anti-apoptotic properties to tumor cells. With the
recent development of inhibitors [39], additional MELK
inhibition may also be a therapeutic option in patients
with PD-L1 amplified cancers [40].
On a genome-wide scale, recurrent patterns of copy

number alterations have been discovered across patients
and cancer types suggesting their shaping by selective
pressures and roles in tumor genesis and tumor growth
[41, 42]. However, the effects of these, in particular of
small gene dosage alterations including chromosome or
chromosome arm gains or losses, on the phenotypic level
are incompletely understood. In a recent pan-cancer ana-
lysis, a copy number alteration signature has been linked
up-regulation of glycolysis [43], while chromosome 8p loss
in breast cancer has been linked to alterations in lipid me-
tabolism [44]. Here, we demonstrated a link of 9p gains to
the regulation of proliferation and immune response. Our
observations support a view of copy number alterations as
hard-wired genetic changes that maintain cancer hall-
marks including ‘self-sufficiency in growth’ and ‘evasion
from the immune system’ from Hanahan’s and Weinberg’s
list [45].

Conclusions
In summary, we identified a gene signature that is upregu-
lated in PD-L1 CNG tumors across many cancer types. The
data contribute to understanding the biology of these can-
cers and highlight additional vulnerabilities that might be
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therapeutically exploitable thus possibly sustaining or en-
hancing efficacy of checkpoint blockers.

Additional files

Additional file 1: Table S1. Gene list of 75 top up-regulated genes
identified in a genome-wide transcriptome analysis across 22 cancer types.
The list was obtained by filtering for genes harboring significant and at least
1.5-fold enhanced mRNA expression in tumors with PD-L1 gains across at least
6 cancer types. Pan-cancer p-values were calculated using Fisher’s method (*
= significant, ** = significant after Bonferroni correction for 22,849 genes). The
set of 75 genes was enriched for the chromosomal regions 9p13 to 9p24 (36
genes) as well as the biological processes ‘cell cycle’ (22 genes) and ‘immune
system process’ (16 genes). (XLSX 34 kb)

Additional file 2: Table S2. Enrichment analysis of GO categories in
the 75-gene list. (XLSX 240 kb)
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