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ErbB3 harbors weak kinase activity, but strongly activates down-
stream phosphatidylinositol 3-kinase/Akt signaling through het-
erodimerization with and activation by other ErbB receptor
tyrosine kinases. We report here that ErbB3 loss in the luminal
mammary epithelium of mice impaired Akt and MAPK signaling
and reduced luminal cell proliferation and survival. ERBB3 mRNA
expression levels were highest in luminal mammary populations
and lowest in basal cell/stem cell populations. ErbB3 loss in mam-
mary epithelial cells shifted gene expression patterns toward
a mammary basal cell/stem cell signature. ErbB3 depletion-induced
gene expression changes were rescued upon activation of Akt and
MAPK signaling. Interestingly, proliferation and expansion of the
mammary basal epithelium (BE) occurred upon ErbB3 targeting in
the luminal epithelium, but not upon its targeting in the BE. Mul-
tiple cytokines, including interleukin 6, were induced upon ErbB3
depletion in luminal epithelium cells, which increased growth of
BE cells. Taken together, these results suggest that ErbB3 regulates
the balance of differentiated breast epithelial cell types by regu-
lating their growth and survival through autocrine- and paracrine-
signaling mechanisms.

mammary epithelial differentiation | ErbB3

Aberrant regulation of the ErbB family of receptor tyrosine
kinases (RTKs) and their ligands is common in human can-

cers (1–4). This family consists of four members: HER1/ErbB1/
EGFR (epidermal growth factor receptor), HER2/ErbB2/Neu,
HER3/ErbB3, and HER4/ErbB4. Except for ErbB3, which has
weak kinase activity, the ErbB RTKs exhibit dimerization-induced
phosphorylation and catalytic activation. In response to ligand
binding, ErbBs form homodimers and heterodimers with other
ErbB coreceptors. ErbB3 relies on transphosphorylation by het-
erodimeric partners to induce signal transduction (5–7).
ErbB RTKs are required for breast development, although each

receptor bears a unique spatiotemporal expression pattern. ErbB2
loss in the mammary epithelium delays ductal elongation during
puberty and disorganizes cells within terminal end buds (TEBs) (8–
10). EGFR and ErbB4 are not required for mammary ductal de-
velopment. Rather, EGFR is expressed in the basal epithelium
(BE) and in the mammary stroma, and ErbB4 is necessary for milk
production (11, 12). Although classical knockout of mouse ErbB3
results in embryonic lethality (13), transplant experiments showed
that ErbB3 drives growth of the mammary epithelium during pu-
berty (8). Although the mechanism(s) by which ErbB2 and ErbB3
regulate growth of the ductal epithelium are currently unknown,
such knowledgewill impact our understanding of the earliest events
contributing to the formation of ErbB2/HER2-amplified breast
cancers, which account for 20–30% of all breast cancers. ErbB3-
ErbB2 heterodimers are the most potent oncogenic ErbB-signaling
pair due in part to strong ErbB3-induced phosphatidylinositol 3-
kinase (PI3K) activation in response to ErbB3 tyrosine phosphor-
ylation at six PI3K interaction motifs (14, 15).
To understand the role of ErbB3 in mammary gland de-

velopment, we knocked out ERBB3 in mammary epithelial cells

(MECs) and tumors using a mouse mammary tumor virus
(MMTV)-driven Cre/lox system (ErbB3MMTV-KO) (16), which
expresses Cre recombinase primarily in the mammary luminal
epithelium (LE). We discovered that ErbB3 is required in the
LE, but not in the BE, to support cell proliferation and survival.
Loss of ErbB3 decreased MEK/MAPK and PI3K/Akt signaling
and impaired differentiation of MECs along the luminal lineage.
Definitive LE markers were decreased in the absence of ErbB3,
and rescued upon reactivation of Akt and MEK. In contrast, the
BE exhibited increased cell proliferation when ErbB3 was lost
from the LE, suggesting communication between these two epi-
thelial compartments. ErbB3-depleted LE cells produced mito-
genic cytokines, which increased BE growth. These data demon-
strate that ErbB3 maintains the LE at the luminal progenitor stage
and regulates the balance of differentiated epithelial cell types
within the mammary gland through both autocrine and paracrine
mechanisms.

Results
ErbB3 Directs Growth, Survival, and Organization of the Developing
Mammary Epithelium. The mammary ductal epithelium begins
lengthening distally through the mammary fat pad during pu-
berty. Proliferation of the mammary epithelium and invasion
through the fat pad occur primarily within club-shaped multicell-
layered TEBs located at the distal-most aspects of the growing
ducts. TEBs consist of two main cell layers: the cap layer, which
gives rise to the BE, and the body layer, which gives rise to the
LE. ErbB3 protein expression was higher in TEB body cells than
in cap cells (Fig. 1A). ErbB3 was substantially reduced in TEBs
of ErbB3MMTV-KO mice, which use MMTV-Cre transgene ex-
pression in the LE to cause genomic recombination at floxed
ErbB3 alleles in ErbB3FL/FL mice (16). Ductal lengthening dur-
ing puberty was delayed in 8-wk-old ErbB3MMTV-KO virgin fe-
male mice compared with heterozygous ErbB3FL/+ × MMTV-
Cre controls (Fig. 1A), although ducts permeated the full length
of the mammary fat pads by 16 wk of age in ErbB3MMTV-KO

female mice (Fig. S1); ErbB3flox/+ heterozygotes showed no
change in mammary phenotype compared with wild-type (WT)
mice (16) and were used as controls. Decreased thickness of
the TEB body cell layer was evident in ErbB3MMTV-KO samples
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(Fig. 1B) due in part to decreased cellular proliferation as
measured by Ki67 immunohistochemistry (IHC). In heterozy-
gous TEBs, E-cadherin IHC-defined body cells organized in a
multilayered club-shaped pattern. TEBs in ErbB3MMTV-KO

mice displayed thinning E-cadherin+ body cell layers with un-
dulating patterns of disorganization. Although smooth muscle
actin (SMA) identified a single layer of cap cells in heterozygous
controls, ErbB3MMTV-KO TEBs harbored multiple layers of
SMA+ cap cells. These results suggest ErbB3 loss in TEBs dis-
rupts structural organization and the body/cap cell ratio, which
may contribute to reduced ductal growth (Fig. 1A).

ErbB3 Phosphorylation and Signaling Drive Cell Survival in the Mature
and Pubertal Luminal Mammary Epithelium. Loss of ErbB3 in the
mammary epithelium of 6-wk-old virgin female ErbB3MMTV-KO

mice resulted in decreased P-Akt in the mammary gland (Fig.
1C). Because Akt is phosphorylated in response to PI3K acti-
vation, these results suggest that ErbB3 is required for PI3K
activation and Akt signaling in the LE. Similarly, acute doxycy-
cline (DOX)-induced ErbB3 depletion in the adult LE achieved
using double-transgenic mice expressing DOX-inducible Cre
(MMTV-rtTA × TetOp-Cre) (17, 18) crossed with ErbB3FL/FL

mice to produce ErbB3DOX-KO mice also decreased P-Akt levels
and decreased P-MAPK levels in the mammary gland (Fig. 1D).
ErbB3 tyrosine phosphorylation was blocked by treating WT
females with the ErbB1/2 inhibitor lapatinib (100 mg/kg/d).

Lapatinib treatment decreased P-ErbB2, P-ErbB3, P-Akt, and
P-MAPK compared with controls (Fig. 1E), suggesting that PI3K
and MAPK signaling in the mammary gland requires hetero-
dimeric activation of ErbB3.
Because Akt regulates cell survival, we examined apoptosis

in mammary glands using TUNEL analysis. Constitutive or
inducible loss of ErbB3 increased LE cell death in pubertal or
adult mice, respectively (Fig. 1 F and G). Also, inhibition of
ErbB3 phosphorylation using lapatinib increased the fraction
of TUNEL+ cells (Fig. 1H). Fig. 1 demonstrates that ErbB3 is
required within the quiescent mature LE to maintain cell sur-
vival and that ErbB3 phosphorylation by ErbB family members
drives PI3K and MAPK signaling and cell survival in the un-
transformed mammary epithelium.

Mammary Gland ErbB3 Expression Is Highest in Luminal Epithelium.
Antibodies against cell-surface markers of distinct mammary
epithelial populations are used to sort freshly digested mammary
glands into epithelial subpopulations by flow cytometry. Using
this approach on mouse and human tissues, gene expression
analysis of each mammary epithelial subpopulation was per-
formed (19, 20). We analyzed available datasets and found that
low levels of ERBB3 mRNA were present in the BE/mammary
stem cell (BE/MaSC) population, whereas robust ERBB3 ex-
pression was detected in the mature luminal population (“mL” in
Fig. 2A). Committed luminal progenitors also expressed high
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levels of ERBB3, consistent with the notion that ERBB3 ex-
pression is induced in the mammary LE population prior to
commitment to the luminal lineage. In addition, mammary
ERBB3 expression was higher in mid-to-late puberty (6–7 wk) in
mice, when specification and maintenance of the LE is maxi-
mized (Fig. 2B). Given that luminal breast cancers are thought to
arise from transformed luminal breast epithelial cells and that
ErbB3 expression is highest in untransformed LE cells, we ex-
amined ERBB3 mRNA expression in a panel of human breast
cancers. Interestingly, ERBB3 expression positively correlated
with more differentiated breast cancers (r2 = 0.72, P < 0.0001)
defined by the previously published luminal differentiation ge-
nomic model (21) (Fig. 2C). These expression data suggest that
ErbB3 correlates with luminal differentiation of the mammary
epithelium.

ErbB3 Is Required to Maintain Expression of an LE Signature. We
examined gene expression changes occurring in response to ErbB3
depletion in primary mammary epithelial organoids grown in 3D
Matrigel, allowing us to assess molecular changes occurring in
the mammary epithelium without potentially confounding stromal

gene expression changes (22, 23). DOX-induced loss of ErbB3
decreased Akt phosphorylation in ErbB3DOX-KO primary MECs
(PMECs) in monolayer culture (Fig. S2A). ErbB3DOX-KO orga-
noids recapitulated the phenotypic consequences of ErbB3 loss
seen in vivo, including formation of smaller acinar structures with
less complexity, increased cell death, and decreased proliferation
(Fig. S2 B–D). Gene expression analysis of organoids treated for
10 d with or without DOX ex vivo identified 403 genes with altered
expression (equal to or more than twofold, false discovery rate-
adjusted P ≤ 0.05) in response to ErbB3 ablation. Gene Ontology
analysis implicated the products of many such genes in cell cycle
progression, including up-regulation of cell cycle inhibitors (e.g ,
DDIT3, GADD45a, CDKN1B) and down-regulation of cell cycle
activators (e.g , CCNB1, PLK1, CCNE1) in response to ErbB3
ablation. Many such genes are included in a “proliferation clus-
ter,” a core set of genes identified by cDNA profiling whose ex-
pression correlated with rapid cell proliferation in large breast
cancer datasets (24). Western analysis of ErbB3DOX-KO MECs
confirmed up-regulation of the cell cycle inhibitor p27 (CDKN1B)
and down-regulation of cyclin B1 (CCNB1) (Fig. 2D).
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ELF5, KIT, CDKN1B, and CCN1B. *P < 0.05, ***P < 0.01, ***P < 0.001.
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Genes associated with luminal differentiation were also down-
regulated in ErbB3-deficient mammary glands, including the
milk protein β-casein, which was also down-regulated at the
protein level (Fig. 2D). Decreased gene expression of E74-like
factor 5 (ELF5), a transcription factor required for growth and
differentiation of the luminal alveolar population (25–27), and
the RTK gene KIT were also observed. Elf5 and c-KIT have
emerged as definitive markers of the luminal progenitor pop-
ulation (19). Elf5 and c-KIT down-regulation was confirmed by
Western blot (Fig. 2D).
Next, we used the previously described gene expression sig-

natures for distinct cell types within the hierarchical model of
mammary epithelial differentiation (Fig. 2 A and B) to query
expression data derived from organoid cultures expressing or
lacking ErbB3. Untreated organoids retaining ErbB3 displayed
expression patterns that correlated positively with expression
signatures from mature luminal cells and luminal progenitors
(Fig. 2E) and negatively correlated with the BE/MaSC signature.
However, DOX-induced loss of ErbB3 in organoids shifted gene
expression patterns, resulting in a negative correlation with lu-
minal signatures, but a positive correlation with the BE/MaSC
signature.

ErbB3-PI3K and -MAPK Signaling Regulate Expression of Luminal
Markers. We investigated the signaling pathways downstream of
ErbB3 that regulate expression of luminal molecular markers and
proliferation cluster genes. ErbB3flox/flox PMECs were infected ex
vivo with adenoviral Cre (Ad.Cre) or lacZ control (Ad.LacZ) in
combination with adenoviral constitutively active Akt (myrAkt),
dominant-negative Akt (dnAkt), active MEK1 (caMEK1), or
dominant-negative MEK1 (dnMEK1). Western analysis demon-
strated that Cre-mediated loss of ErbB3 in Ad.Cre-infected
PMECs decreased P-Akt and P-MAPK (Fig. 2F). Expression of
myrAkt1 and caMEK1 restored P-Akt and P-MAPK levels,

respectively. Conversely, P-Akt and P-MAPK were decreased
upon expression of dnAkt1 and dnMek1, respectively, even in the
presence of ErbB3.
Expression of ELF5 and KIT were chosen as surrogate mark-

ers of luminal differentiation, as these are definitive markers of
luminal progenitors and were decreased upon ErbB3 depletion
(Fig. 2D). Transcript levels of ELF5 and KIT were reduced upon
ErbB3 ablation in PMECs (Fig. 2G), but were partially rescued
upon expression of caMEK1 and myrAkt, although caMEK1
produced a greater effect on ELF5 and KIT up-regulation com-
pared with myrAkt. Conversely, ELF5 and KIT expression were
inhibited upon expression of dnAkt1 and dnMEK1 despite con-
tinued expression of ErbB3.
Down-regulation of CCNB1 and up-regulation of CDKN1B

were seen in ErbB3-depleted cells. Expression of caMEK1 or
myrAkt prevented down-regulation of CCNB1 and up-regulation
CDKN1B in response to ErbB3 ablation. Conversely, dnMEK1
and dnAkt increased expression of CDKN1B and decreased
CCNB1, despite continued expression of ErbB3. These results
highlight the importance of ErbB3-PI3K signaling within the lu-
minal lineage and establish an important role for ErbB3-MAPK
signaling in controlling proliferation in this compartment.

Expansion of the Basal Epithelium in Response to ErbB3 Depletion.
Because ErbB3 loss expanded the SMA+ cap cell layer, which
gives rise to the mature BE, we used cytokeratin 5 (CK5) staining
to detect BE cells in ErbB3MMTV-KO mammary glands. In 12-wk-
old virgin female mice, the CK5+ BE was a single cell layer in
heterozygous controls, but was expanded to multiple cell layers
in age-matched ErbB3MMTV-KO samples (Fig. 3A). To test if
loss of ErbB3 in the BE could also directly expand the BE
population, we crossed ErbB3Flox/Flox mice to transgenic mice
expressing Cre recombinase via the basal cytokeratin 14 (CK14)
promoter (ErbB3CK14-KO mice). ErbB3 loss in CK14-expressing
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basal cells did not disrupt mammary ductal elongation (Fig. S3A)
and did not alter TEB cellular organization in ErbB3CK14-KO
mice (Fig. S3B). Ki67 IHC did not reveal changes in cell pro-
liferation due to BE knockout of ErbB3. Importantly, the SMA+

cap cell layer in developing TEBs appeared normal, and the
CK5+ basal cell population was unaltered in ErbB3CK14-KO mice
compared with heterozygous controls.
We next examined CK5 expression in ErbB3-deficient

MMTV-PyVmT tumors (28). The CK5+ population exhibited
profound expansion in ErbB3MMTV-KO × PyVmT tumors com-
pared with heterozygous controls (Fig. 3C). Keratinizing squa-
mous metaplasia was evident in 7/20 ErbB3-deficient MMTV-
PyVmT tumors, but was not identified in ErbB3flox/+ × MMTV-
PyVmT tumors (Fig. 3C). Similarly, keratinizing squamous
transdifferentiation of the mammary epithelium was seen in
3/12 ErbB3MMTV-KO mice (Fig. 3D), but was not observed in
ErbB3CK14-KO samples (0/12). Therefore, loss of ErbB3 in the
LE alters the balance of luminal and basal cells in both normal
and transformed mammary epithelium.
It is possible that ErbB3 loss in LE cells indirectly promotes

BE growth. In support of this idea, increased BE proliferation
was observed in ErbB3MMTV-KO mammary glands compared with
heterozygous controls [assessed using proliferating cell nuclear
antigen (PCNA) IHC] (Fig. 3E), but not in ErbB3CK14-KO glands
(Fig. 3F). Fewer PCNA+ LE cells were seen in ErbB3MMTV-KO

mammary glands compared with heterozygous controls and with
ErbB3CK14-KO samples, consistent with the decreased body cell
proliferation seen in ErbB3-deficient TEBs (Fig. 1B).

IL-6 Secreted by ErbB3-Deficient Luminal Cells Increases Myoepithelial
Cell Growth. We next tested the hypothesis that secreted factors
from luminal cells in response to ErbB3 loss could drive expan-
sion of the BE. Using a quantitative PCR array platform, we
identified profound up-regulation of genes encoding secreted
factors in ErbB3-siRNA–transfected T47D human luminal
breast cancer cells (Fig. 4A), such as IL-6 and vascular endothelial
growth factor-A (VEGF-A). Conditioned media from T47D lu-
minal breast cancer cells transfected with siRNA targeting
ERBB3 and from DOX-treated ErbB3DOX-KO PMECs was ana-
lyzed by cytokine array (Fig.4B and Fig. S4). ErbB3 loss induced
secretion of IL-6, VEGF, and other highlighted cytokines. In-
hibition of ErbB3 phosphorylation in ErbB3DOX-KO PMECs using
the ErbB1/2 inhibitor lapatinib increased secretion of IL-6,
VEGF-A, and RANTES/CCL5 (Fig. 4C). Inhibition of PI3K
using the pan-p110 inhibitor BKM120 similarly increased secre-
tion of IL-6 and VEGF-A, but not of RANTES. The MEK1 in-
hibitorAZD6244 increasedRANTES secretion fromErbB3DOX-KO

MECs, but did not significantly alter expression of IL-6 or VEGF-A.
Therefore, interruption ofErbB3-PI3K andErbB3-MAPK signaling
in LE cells increases the secretion of cytokines in distinct ways.
Recombinant human IL-6 (10 ng/mL) in serum-free medium

increased growth of primary human mammary basal epithelial
cells (hMBEC) 5.2-fold compared with untreated cells (Fig. 4D),
an effect that was impaired by a neutralizing IL-6 antibody
(10 μg/mL). EGF was used as a positive control and similarly
enhanced growth of BE cells, but was not inhibited by IL-6 anti-
body. Conditioned media from ErbB3-deficient LE cells infected
with Ad.Cre increased growth of hMBECs to a greater extent than
did media from ErbB3-expressing controls infected with Ad.GFP
(Fig. 4E). Addition of IL-6 antibody to cultured media from
ErbB3-deficient tumor cells abrogated its ability to increase BE
cell growth, demonstrating that IL-6 is secreted by ErbB3-deficient
breast cells increasing growth of neighboring BE cells.

Discussion
The data presented here suggest (i) that ErbB3 signaling speci-
fies and/or maintains the luminal phenotype of breast epithelium
and (ii) that loss of ErbB3 from the LE drives expansion of the
BE subpopulation. These conclusions are supported by the de-
creased presence of body cells within ErbB3-deficient TEBs (Fig.
1B), increased LE cell death upon ErbB3 loss or impaired ErbB3

phosphorylation (Fig. 1F), and an ErbB3 loss-induced shift in
genome-wide expression patterns away from previously defined
luminal signatures (Fig. 2E). These observations are consistent
with the fact that ErbB3 expression is highest in mature luminal
and luminal progenitor cells and lowest in the basal cell sub-
populations of the breast (Fig. 2A). In addition, the luminal pro-
genitor population markers ELF5 and KIT (19, 20) are decreased
in response to loss of ErbB3, suggesting that hierarchical differ-
entiation of the mammary epithelium along the luminal lineage
requires ErbB3 for luminal specification and/or maintenance be-
fore expansion of committed luminal progenitors.
ErbB3 ablation from the mammary LE increased cell death

while decreasing cell growth. This is in contrast to a report
suggesting that mammary epithelial ErbB3 loss decreased cell
survival but did not alter cell growth (8). The reasons underlying
this discrepancy are currently unclear, although numerous dif-
ferences in the models used may contribute (8). For example,
differing genetic backgrounds used in the two studies may be
a factor. Also, results presented here describe development of
intact mammary glands in the context of a competent immune
system, compared with the previous report, which used ortho-
topically transplanted embryonic mammary buds in immuno-
compromised mice (8). Finally, ErbB3 loss in this study was
directed to specific mammary epithelial compartments: the LE
(via MMTV-Cre) or the BE (via CK14-Cre). In contrast, the
previously published model (8) lacked ErbB3 in all mammary
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epithelial populations. We have shown here that ErbB3 impacts
distinct mammary epithelial populations in profoundly different
ways, potentially contributing to this phenotypic discrepancy.
MMTV-PyVmT tumors express high levels of the luminal

cytokeratins 8 and 18 and low levels of CK5, a cytokeratin as-
sociated with basal-like breast cancers, consistent with expression
analyses clustering the MMTV-PyVmT tumor model with the
luminal subtype of human breast cancers (29). Although loss of
ErbB3 in the mammary epithelium decreases the rate of tumor
formation in MMTV-PyVmT mice (28), ErbB3-deficient tumors
eventually formed, exhibiting an increased CK5+ tumor cell
population (Fig. 3C). Because BE and LE cells arise from
common stem cells, it is possible that loss of ErbB3 prevents
differentiation along the luminal lineage, forcing cells to differ-
entiate into the basal lineage as a default. Our results do not
disprove this possibility, but strongly support an alternative sce-
nario in which ErbB3 loss from the LE causes cytokine secretion,
which causes growth of neighboring basal cells (Fig. 4).
Interestingly, ErbB3 loss increased CK5+ cells in both un-

transformed mammary epithelia and mammary tumors (Fig. 3A),
suggesting that ErbB3 directs cell fate decisions in cancers. This
could have important implications regarding molecular classi-
fications of breast cancers. Advances in molecular analysis of
primary tumorsmake clear that different subtypes of human breast
cancer exist (30). Increasing evidence suggests that the molecular
subtype of a given breast cancer may be a reflection of the cell type
from which that cancer originates (20, 31–33). Therefore, it is
critical to understand the signaling pathways that define the epi-

thelial ontogeny of the mammary gland and how these pathways
may be used within cancers that arise from each cell type. Our
results demonstrate that ErbB3 is required within the luminal
lineages of the breast. Further study of how ErbB3 and other
differentiation signals may influence cell fate decisions within
preneoplastic mammary glands will support our understanding of
how tumors adopt specific molecular and clinical phenotypes, in-
formation that may be used to treat or prevent breast cancer.

Materials and Methods
All mouse experiments were approved by the Vanderbilt Institutional Animal
Care and Use Committee. All models used, including genetically engineered
mouse models and cell lines, are described in SI Materials and Methods.
Detailed methods for Western analysis, RT-PCR, quantification of cell
growth, and histological analyses can be found in SI Materials and Methods.
Detailed materials and methods can be found in SI Materials and Methods.
Additionally, Figs. S1–S4, associated legends, and references can also be
found in Supporting Information.
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