107 research outputs found

    On the Interaction of a Microwave Excited Oxygen Plasma with a Jet of Precursor Material for Deposition Applications

    Get PDF
    A plasma source based on a microwave discharge at atmospheric pressure is used to produce an oxygen plasma torch. An admixture of liquid precursor material is evaporated and injected into the torch through a nozzle, causing oxidization and deposition of doped silica at a nearby quartz substrate. The temperature generated inside the plasma source and in the plume, in the region of treatment, and at the substrate surface are key parameters, which are needed for process description and optimization of plasma-chemical reactions.Optical emission spectroscopy, high-speed imaging, and thermography were applied to observe and to characterize the jet behavior and composition. The experimental results are compared with self-consistent modeling

    Fn3 Proteins Engineered to Recognize Tumor Biomarker Mesothelin Internalize Upon Binding

    Get PDF
    Mesothelin is a cell surface protein that is overexpressed in numerous cancers, including breast, ovarian, lung, liver, and pancreatic tumors. Aberrant expression of mesothelin has been shown to promote tumor progression and metastasis through interaction with established tumor biomarker CA125. Therefore, molecules that specifically bind to mesothelin have potential therapeutic and diagnostic applications. However, no mesothelin-targeting molecules are currently approved for routine clinical use. While antibodies that target mesothelin are in development, some clinical applications may require a targeting molecule with an alternative protein fold. For example, non-antibody proteins are more suitable for molecular imaging and may facilitate diverse chemical conjugation strategies to create drug delivery complexes. In this work, we engineered variants of the fibronectin type III domain (Fn3) non-antibody protein scaffold to bind to mesothelin with high affinity, using directed evolution and yeast surface display. Lead engineered Fn3 variants were solubly produced and purified from bacterial culture at high yield. Upon specific binding to mesothelin on human cancer cell lines, the engineered Fn3 proteins internalized and co-localized to early endosomes. To our knowledge, this is the first report of non-antibody proteins engineered to bind mesothelin. The results validate that non-antibody proteins can be engineered to bind to tumor biomarker mesothelin, and encourage the continued development of engineered variants for applications such as targeted diagnostics and therapeutics

    Fn3 Proteins Engineered to Recognize Tumor Biomarker Mesothelin Internalize Upon Binding

    Get PDF
    Mesothelin is a cell surface protein that is overexpressed in numerous cancers, including breast, ovarian, lung, liver, and pancreatic tumors. Aberrant expression of mesothelin has been shown to promote tumor progression and metastasis through interaction with established tumor biomarker CA125. Therefore, molecules that specifically bind to mesothelin have potential therapeutic and diagnostic applications. However, no mesothelin-targeting molecules are currently approved for routine clinical use. While antibodies that target mesothelin are in development, some clinical applications may require a targeting molecule with an alternative protein fold. For example, non-antibody proteins are more suitable for molecular imaging and may facilitate diverse chemical conjugation strategies to create drug delivery complexes. In this work, we engineered variants of the fibronectin type III domain (Fn3) non-antibody protein scaffold to bind to mesothelin with high affinity, using directed evolution and yeast surface display. Lead engineered Fn3 variants were solubly produced and purified from bacterial culture at high yield. Upon specific binding to mesothelin on human cancer cell lines, the engineered Fn3 proteins internalized and co-localized to early endosomes. To our knowledge, this is the first report of non-antibody proteins engineered to bind mesothelin. The results validate that non-antibody proteins can be engineered to bind to tumor biomarker mesothelin, and encourage the continued development of engineered variants for applications such as targeted diagnostics and therapeutics

    Electrically controlled long-distance spin transport through an antiferromagnetic insulator

    Full text link
    Spintronics uses spins, the intrinsic angular momentum of electrons, as an alternative for the electron charge. Its long-term goal is in the development of beyond-Moore low dissipation technology devices. Recent progress demonstrated the long-distance transport of spin signals across ferromagnetic insulators. Antiferromagnetically ordered materials are however the most common class of magnetic materials with several crucial advantages over ferromagnetic systems. In contrast to the latter, antiferromagnets exhibit no net magnetic moment, which renders them stable and impervious to external fields. In addition, they can be operated at THz frequencies. While fundamentally their properties bode well for spin transport, previous indirect observations indicate that spin transmission through antiferromagnets is limited to short distances of a few nanometers. Here we demonstrate the long-distance, over tens of micrometers, propagation of spin currents through hematite (\alpha-Fe2O3), the most common antiferromagnetic iron oxide, exploiting the spin Hall effect for spin injection. We control the spin current flow by the interfacial spin-bias and by tuning the antiferromagnetic resonance frequency with an external magnetic field. This simple antiferromagnetic insulator is shown to convey spin information parallel to the compensated moment (N\'eel order) over distances exceeding tens of micrometers. This newly-discovered mechanism transports spin as efficiently as the net magnetic moments in the best-suited complex ferromagnets. Our results pave the way to ultra-fast, low-power antiferromagnet-insulator-based spin-logic devices that operate at room temperature and in the absence of magnetic fields

    Temporal and spectral fingerprint of ultrafast all-coherent spin switching

    Get PDF
    Future information technology demands ultimately fast, low-loss quantum control. Intense light fields have facilitated important milestones, such as inducing novel states of matter, accelerating electrons ballistically, or coherently flipping the valley pseudospin. These dynamics leave unique signatures, such as characteristic bandgaps or high-order harmonic radiation. The fastest and least dissipative way of switching the technologically most important quantum attribute – the spin – between two states separated by a potential barrier is to trigger an all-coherent precession. Pioneering experiments and theory with picosecond electric and magnetic fields have suggested this possibility, yet observing the actual dynamics has remained out of reach. Here, we show that terahertz (1 THz = 1012 Hz) electromagnetic pulses allow coherent navigation of spins over a potential barrier and we reveal the corresponding temporal and spectral fingerprints. This goal is achieved by coupling spins in antiferromagnetic TmFeO3 with the locally enhanced THz electric field of custom-tailored antennas. Within their duration of 1 ps, the intense THz pulses abruptly change the magnetic anisotropy and trigger a large-amplitude ballistic spin motion. A characteristic phase flip, an asymmetric splitting of the magnon resonance, and a long-lived offset of the Faraday signal are hallmarks of coherent spin switching into adjacent potential minima, in agreement with a numerical simulation. The switchable spin states can be selected by an external magnetic bias. The low dissipation and the antenna’s sub-wavelength spatial definition could facilitate scalable spin devices opera¬ting at THz rates

    CTCF induces histone variant incorporation, erases the H3K27me3 histone mark and opens chromatin

    Get PDF
    Insulators functionally separate active chromatin domains frominactive ones. The insulator factor, CTCF, has been found to bind to boundaries and to mediate insulator function. CTCF binding sites are depleted for the histone modification H3K27me3 and are enriched for the histone variant H3.3. In order to determine whether demethylation of H3K27me3 and H3.3 incorporation are a requirement for CTCF binding at domain boundaries or whether CTCF causes these changes, we made use of the LacI DNA binding domain to control CTCF binding by the Lac inducer IPTG. Here we show that, in contrast to the related factor CTCFL, the N-terminus plus zinc finger domain of CTCF is sufficient to open compact chromatin rapidly. This is preceded by incorporation of the histone variant H3.3, which thereby removes the H3K27me3 mark. This demonstrates the causal role for CTCF in generating the chromatin features found at insulators. Thereby, spreading of a histone modification from one domain through the insulator into the neighbouring domain is inhibited
    corecore