5,642 research outputs found

    Interpreting the time variable RM observed in the core region of the TeV blazar Mrk 421

    Full text link
    In this work we interpret and discuss the time variable rotation measure (RM) found, for the first time over a 1-yr period, in the core region of a blazar. These results are based on a one-year, multi-frequency (15, 24, and 43 GHz) Very Long Baseline Array (VLBA) monitoring of the TeV blazar Markarian 421 (Mrk 421). We investigate the Faraday screen properties and its location with respect to the jet emitting region. Given that the 43 GHz radio core flux density and the RM time evolution suggest a similar trend, we explore the possible connection between the RM and the accretion rate. Among the various scenarios that we explore, the jet sheath is the most promising candidate for being the main source of Faraday rotation. During the one-year observing period the RM trend shows two sign reversals, which may be qualitatively interpreted within the context of the magnetic tower models. We invoke the presence of two nested helical magnetic fields in the relativistic jet with opposite helicities, whose relative contribution produce the observed RM values. The inner helical field has the poloidal component (BpB_{\rm p}) oriented in the observer's direction and produces a positive RM, while the outer helical field, with BpB_{\rm p} in the opposite direction, produces a negative RM. We assume that the external helical field dominates the contribution to the observed RM, while the internal helical field dominates when a jet perturbation arises during the second observing epoch. Being the intrinsic polarization angle parallel to the jet axis, a pitch angle of the helical magnetic field ϕ70\phi\gtrsim 70^\circ is required. Additional scenarios are also considered to explain the observed RM sign reversals.Comment: 6 pages, 2 figures. Published on MNRA

    Multifrequency Polarimetry of the Nrao 140 Jet: Possible Detection of a Helical Magnetic Field and Constraints on its Pitch Angle

    Full text link
    We present results from multifrequency polarimetry of NRAO 140 using the Very Long Baseline Array. These observations allow us to reveal the distributions of both the polarization position angle and the Faraday rotation measure (RM). These distributions are powerful tools to discern the projected and line-of-sight components of the magnetic field, respectively. We find a systematic gradient in the RM distribution, with its sign being opposite at either side of the jet with respect to the jet axis. The sign of the RM changes only with the direction of the magnetic field component along the line of sight, so this can be explained by the existence of helical magnetic components associated with the jet itself. We derive two constraints for the pitch angle of the helical magnetic field from the distributions of the RM and the projected magnetic field; the RM distribution indicates that the helical fields are tightly wound, while that of the projected magnetic field suggests they are loosely wound around the jet axis. This inconsistency may be explained if the Faraday rotator is not cospatial with theemitting region. Our results may point toward a physical picture in which an ultra-relativistic jet (spine) with a loosely wound helical magnetic field is surrounded by a sub-relativistic wind layer (sheath) with a tightly wound helical magnetic field.Comment: 12 pages, 4 figures, ApJ, in pres

    Data report: Summary of revised alteration phases for PACMANUS hydrothermal field - X-ray diffraction analysis of altered felsic volcanic rocks from Holes 1188A, 1188F, 1189A and 1189B

    Get PDF
    Postcruise X-ray diffraction (XRD) data for 95 whole-rock samples from Holes 1188A, 1188F, 1189A, and 1189B are presented. The samples represent alteration types recovered during Leg 193. The data set is incorporated into the shipboard XRD data set. Based on the newly obtained XRD data, distribution of alteration phases were redrawn for Ocean Drilling Program Sites 1188 and 1189

    ALMA Science Verification Data: Millimeter Continuum Polarimetry of the Bright Radio Quasar 3C 286

    Get PDF
    We present full-polarization observations of the compact, steep-spectrum radio quasar 3C~286 made with the ALMA at 1.3~mm. These are the first full-polarization ALMA observations, which were obtained in the framework of Science Verification. A bright core and a south-west component are detected in the total intensity image, similar to previous centimeter images. Polarized emission is also detected toward both components. The fractional polarization of the core is about 17\%, this is higher than the fractional polarization at centimeter wavelengths, suggesting that the magnetic field is even more ordered in the millimeter radio core than it is further downstream in the jet. The observed polarization position angle (or EVPA) in the core is \sim\,3939^{\circ}, which confirms the trend that the EVPA slowly increases from centimeter to millimeter wavelengths. With the aid of multi-frequency VLBI observations, we argue that this EVPA change is associated with the frequency-dependent core position. We also report a serendipitous detection of a sub-mJy source in the field of view, which is likely to be a submillimeter galaxy.Comment: 10 pages, 9 figures, Accepted for publication in the Ap

    Separability of Rotational Effects on a Gravitational Lens

    Full text link
    We derive the deflection angle up to O(m2a)O(m^2a) due to a Kerr gravitational lens with mass mm and specific angular momentum aa. It is known that at the linear order in mm and aa the Kerr lens is observationally equivalent to the Schwarzschild one because of the invariance under the global translation of the center of the lens mass. We show, however, nonlinear couplings break the degeneracy so that the rotational effect becomes in principle separable for multiple images of a single source. Furthermore, it is distinguishable also for each image of an extended source and/or a point source in orbital motion. In practice, the correction at O(m2a)O(m^2a) becomes O(1010)O(10^{-10}) for the supermassive black hole in our galactic center. Hence, these nonlinear gravitational lensing effects are too small to detect by near-future observations.Comment: 12 pages (RevTeX); accepted for publication in Phys. Rev.

    On the jets, kinks, and spheromaks formed by a planar magnetized coaxial gun

    Get PDF
    Measurements of the various plasma configurations produced by a planar magnetized coaxial gun provide insight into the magnetic topology evolution resulting from magnetic helicity injection. Important features of the experiments are a very simple coaxial gun design so that all observed geometrical complexity is due to the intrinsic physical dynamics rather than the source shape and use of a fast multiple-frame digital camera which provides direct imaging of topologically complex shapes and dynamics. Three key experimental findings were obtained: (1) formation of an axial collimated jet [Hsu and Bellan, Mon. Not. R. Astron. Soc. 334, 257 (2002)] that is consistent with a magnetohydrodynamic description of astrophysical jets, (2) identification of the kink instability when this jet satisfies the Kruskal-Shafranov limit, and (3) the nonlinear properties of the kink instability providing a conversion of toroidal to poloidal flux as required for spheromak formation by a coaxial magnetized source [Hsu and Bellan, Phys. Rev. Lett. 90, 215002 (2003)]. A new interpretation is proposed for how the n=1 central column instability provides flux amplification during spheromak formation and sustainment, and it is shown that jet collimation can occur within one rotation of the background poloidal field.Comment: Physics of Plasmas (accepted

    Distribution of Faraday Rotation Measure in Jets from Active Galactic Nuclei II. Prediction from our Sweeping Magnetic Twist Model for the Wiggled Parts of AGN Jets and Tails

    Full text link
    Distributions of Faraday rotation measure (FRM) and the projected magnetic field derived by a 3-dimensional simulation of MHD jets are investigated based on our "sweeping magnetic twist model". FRM and Stokes parameters were calculated to be compared with radio observations of large scale wiggled AGN jets on kpc scales. We propose that the FRM distribution can be used to discuss the 3-dimensional structure of magnetic field around jets and the validity of existing theoretical models, together with the projected magnetic field derived from Stokes parameters. In the previous paper, we investigated the basic straight part of AGN jets by using the result of a 2-dimensional axisymmetric simulation. The derived FRM distribution has a general tendency to have a gradient across the jet axis, which is due to the toroidal component of the magnetic field generated by the rotation of the accretion disk. In this paper, we consider the wiggled structure of the AGN jets by using the result of a 3-dimensional simulation. Our numerical results show that the distributions of FRM and the projected magnetic field have a clear correlation with the large scale structure of the jet itself, namely, 3-dimensional helix. Distributions, seeing the jet from a certain direction, show a good matching with those in a part of 3C449 jet. This suggests that the jet has a helical structure and that the magnetic field (especially the toroidal component) plays an important role in the dynamics of the wiggle formation because it is due to a current-driven helical kink instability in our model.Comment: Accepted for publication in Ap

    The wave front set of oscillatory integrals with inhomogeneous phase function

    Get PDF
    A generalized notion of oscillatory integrals that allows for inhomogeneous phase functions of arbitrary positive order is introduced. The wave front set of the resulting distributions is characterized in a way that generalizes the well-known result for phase functions that are homogeneous of order one.Comment: 12 pages, published versio

    A View through Faraday's Fog 2: Parsec Scale Rotation Measures in 40 AGN

    Full text link
    Results from a survey of the parsec scale Faraday rotation measure properties for 40 quasars, radio galaxies and BL Lac objects are presented. Core rotation measures for quasars vary from approximately 500 to several thousand radians per meter squared. Quasar jets have rotation measures which are typically 500 radians per meter squared or less. The cores and jets of the BL Lac objects have rotation measures similar to those found in quasar jets. The jets of radio galaxies exhibit a range of rotation measures from a few hundred radians per meter squared to almost 10,000 radians per meter squared for the jet of M87. Radio galaxy cores are generally depolarized, and only one of four radio galaxies (3C-120) has a detectable rotation measure in the core. Several potential identities for the foreground Faraday screen are considered and we believe the most promising candidate for all the AGN types considered is a screen in close proximity to the jet. This constrains the path length to approximately 10 parsecs, and magnetic field strengths of approximately 1 microGauss can account for the observed rotation measures. For 27 out of 34 quasars and BL Lacs their optically thick cores have good agreement to a lambda squared law. This requires the different tau = 1 surfaces to have the same intrinsic polarization angle independent of frequency and distance from the black hole.Comment: Accepted to the Astrophysical Journal: 71 pages, 40 figure
    corecore