Results from a survey of the parsec scale Faraday rotation measure properties
for 40 quasars, radio galaxies and BL Lac objects are presented. Core rotation
measures for quasars vary from approximately 500 to several thousand radians
per meter squared. Quasar jets have rotation measures which are typically 500
radians per meter squared or less. The cores and jets of the BL Lac objects
have rotation measures similar to those found in quasar jets. The jets of radio
galaxies exhibit a range of rotation measures from a few hundred radians per
meter squared to almost 10,000 radians per meter squared for the jet of M87.
Radio galaxy cores are generally depolarized, and only one of four radio
galaxies (3C-120) has a detectable rotation measure in the core. Several
potential identities for the foreground Faraday screen are considered and we
believe the most promising candidate for all the AGN types considered is a
screen in close proximity to the jet. This constrains the path length to
approximately 10 parsecs, and magnetic field strengths of approximately 1
microGauss can account for the observed rotation measures. For 27 out of 34
quasars and BL Lacs their optically thick cores have good agreement to a lambda
squared law. This requires the different tau = 1 surfaces to have the same
intrinsic polarization angle independent of frequency and distance from the
black hole.Comment: Accepted to the Astrophysical Journal: 71 pages, 40 figure