228 research outputs found

    Flunisolide Decreases Exhaled Nitric Oxide and Nitrotyrosine Levels in Asthmatic Children

    Get PDF
    Background. Exhaled nitric oxide (FeNO) has been reported to be elevated in the oxidative stress involved in asthmatic patients, and the reaction of nitric oxide (NO) with superoxide anions results in the formation of nitrotyrosine. The purpose of this study was to investigate the effect of inhaled steroid treatment on nitrotyrosine levels collected by exhaled breath condensate (EBC) and on FeNO. Methods. This was a single-blind placebo-controlled study. The lung function, FeNO, and nitrotyrosine levels were evaluated in 10 asthmatic children. Results. The nitrotyrosine levels were stable during the placebo period (T0 = 1.16 ng/ml versus T1 = 1.05 ng/ml; NS.), whereas they decreased after the treatment with flunisolide (T2 = 1.14 ng/ml versus T3 = 0.88 ng/ml; P < .001). No significant reduction in FeNO levels was observed after placebo treatment (T0 = 38.4 ppb versus T1 = 34.7 ppb, NS.). In contrast, FeNO values decreased significantly being at T3 = 14.9 ppb (T1 versus T3; P = .024). Conclusions. This study shows that corticosteroid treatment reduces nitrotyrosine levels in EBC of asthmatic subjects

    A comparison between the effects of over-expression of miRNA-16 and miRNA-34a on cell cycle progression of mesothelioma cell lines and on their cisplatin sensitivity

    Get PDF
    The prognosis of patients affected by malignant pleural mesothelioma (MPM) is presently poor and no therapeutic strategies have improved their survival yet. Introduction of miRNA mimics to restore their reduced or absent functionality in cancer cells is considered an important opportunity and a combination of miR's might be even more effective. In the present study, miR-16 and miR-34a were transfected, singularly and in combination, in MPM cell lines H2052 and H28, and their effects on cell proliferation and sensitivity to cisplatin are reported. Interestingly, the overexpression of both miRs, alone or combined, slows down the cell cycle progression, modulates the p53 and HMGB1 expression and increases the sensitivity of cells to cisplatin, producing a marked impairment of cell proliferation and strengthening the apoptotic effect of the drug. However, the co-overexpression of the two miRs results more effective only in the regulation of the cell cycle, but does not enhance the sensitivity of MPM cells to cisplatin. Consequently, although the potential of miR-16 and miR-34a is confirmed, we must conclude that their combination does not improve the response of MPM to chemotherapy

    Monitoraggio biologico ed esposizione a silice: applicazione di nuovi indicatori di dose e di effetto

    Get PDF
    In 16 addetti alla produzione di marmi ricomposti è stato misurato Si-CAE, è stata eseguita una spirometria e sono stati dosati 8oxoGua, 8oxoGuo, 8oxodGuo, SP-A, SP-D, CC16 e HO-1. Si sono osservati valori spirometrici (FVC e FEV1) più bassi nei lavoratori rispetto ai controlli. Nei lavoratori abbiamo osservato livelli più elevati dei seguenti marcatori: Si-CAE, 8oxoGuo ed espressione di HO-1. Lo studio evidenzia che l’esposizione a silice può aumentare i livelli di Si-CAE, che può essere usato per stimare la dose al bersaglio. Infine si evidenziavano aspecifiche alterazioni spirometriche ed un aumento di biomarcatori d’effetto

    In-vivo vascular application via ultra-fast bioprinting for future 5D personalised nanomedicine

    Get PDF
    The design of 3D complex structures enables new correlation studies between the engineering parameters and the biological activity. Moreover, additive manufacturing technology could revolutionise the personalised medical pre-operative management due to its possibility to interplay with computer tomography. Here we present a method based on rapid freeze prototyping (RFP) 3D printer, reconstruction cutting, nano dry formulation, fast freeze gelation, disinfection and partial processes for the 5D digital models functionalisation. We elaborated the high-resolution computer tomography scan derived from a complex human peripheral artery and we reconstructed the 3D model of the vessel in order to obtain and verify the additive manufacturing processes. Then, based on the drug-eluting balloon selected for the percutaneous intervention, we reconstructed the biocompatible eluting-freeform coating containing 40\u2009nm fluorescent nanoparticles (NPs) by means of RFP printer and we tested the in-vivo feasibility. We introduced the NPs-loaded 5D device in a rat's vena cava. The coating dissolved in a few minutes releasing NPs which were rapidly absorbed in vascular smooth muscle cell (VSMC) and human umbilical vein endothelial cell (HUVEC) in-vitro. We developed 5D high-resolution self-dissolving devices incorporating NPs with the perspective to apply this method to the personalised medicine

    Titanium dioxide nanoparticles promote arrhythmias via a direct interaction with rat cardiac tissue

    Get PDF
    BackgroundIn light of recent developments in nanotechnologies, interest is growing to better comprehend the interaction of nanoparticles with body tissues, in particular within the cardiovascular system. Attention has recently focused on the link between environmental pollution and cardiovascular diseases. Nanoparticles <50 nm in size are known to pass the alveolar¿pulmonary barrier, enter into bloodstream and induce inflammation, but the direct pathogenic mechanisms still need to be evaluated. We thus focused our attention on titanium dioxide (TiO2) nanoparticles, the most diffuse nanomaterial in polluted environments and one generally considered inert for the human body.MethodsWe conducted functional studies on isolated adult rat cardiomyocytes exposed acutely in vitro to TiO2 and on healthy rats administered a single dose of 2 mg/Kg TiO2 NPs via the trachea. Transmission electron microscopy was used to verify the actual presence of TiO2 nanoparticles within cardiac tissue, toxicological assays were used to assess lipid peroxidation and DNA tissue damage, and an in silico method was used to model the effect on action potential.ResultsVentricular myocytes exposed in vitro to TiO2 had significantly reduced action potential duration, impairment of sarcomere shortening and decreased stability of resting membrane potential. In vivo, a single intra-tracheal administration of saline solution containing TiO2 nanoparticles increased cardiac conduction velocity and tissue excitability, resulting in an enhanced propensity for inducible arrhythmias. Computational modeling of ventricular action potential indicated that a membrane leakage could account for the nanoparticle-induced effects measured on real cardiomyocytes.ConclusionsAcute exposure to TiO2 nanoparticles acutely alters cardiac excitability and increases the likelihood of arrhythmic events

    A maximum likelihood approach to speed estimation of foreground objects in video signals

    No full text
    Motion and speed estimation play a key role in computer vision and video processing for various application scenarios. Existing algorithms are mainly based on projected and apparent motion models and are currently used in many contexts, such as automotive security and driver assistance, industrial automation and inspection systems, video surveillance, human activity tracking and biomedical solutions, including monitoring of vital signs. In this paper, a general Maximum Likelihood (ML) approach to speed estimation of foreground objects in video streams is proposed. Application examples are presented and the performance of the proposed algorithms is discussed and compared with more conventional solutions
    corecore