433 research outputs found
Types of quantum information
Quantum, in contrast to classical, information theory, allows for different
incompatible types (or species) of information which cannot be combined with
each other. Distinguishing these incompatible types is useful in understanding
the role of the two classical bits in teleportation (or one bit in one-bit
teleportation), for discussing decoherence in information-theoretic terms, and
for giving a proper definition, in quantum terms, of ``classical information.''
Various examples (some updating earlier work) are given of theorems which
relate different incompatible kinds of information, and thus have no
counterparts in classical information theory.Comment: Minor changes so as to agree with published versio
EPR, Bell, and Quantum Locality
Maudlin has claimed that no local theory can reproduce the predictions of
standard quantum mechanics that violate Bell's inequality for Bohm's version
(two spin-half particles in a singlet state) of the Einstein-Podolsky-Rosen
problem. It is argued that, on the contrary, standard quantum mechanics itself
is a counterexample to Maudlin's claim, because it is local in the appropriate
sense (measurements at one place do not influence what occurs elsewhere there)
when formulated using consistent principles in place of the inconsistent
appeals to "measurement" found in current textbooks. This argument sheds light
on the claim of Blaylock that counterfactual definiteness is an essential
ingredient in derivations of Bell's inequality.Comment: Minor revisions to previous versio
Firm size diversity, functional richness, and resilience
This paper applies recent advances in ecology to our understanding of firm development, sustainability, and economic development. The ecological literature indicates that the greater the functional richness of species in a system, the greater its resilience â that is, its ability to persist in the face of substantial changes in the environment. This paper focuses on the effects of functional richness across firm size on the ability of industries to survive in the face of economic change. Our results indicate that industries with a richness of industrial functions are more resilient to employment volatility
Channel kets, entangled states, and the location of quantum information
The well-known duality relating entangled states and noisy quantum channels
is expressed in terms of a channel ket, a pure state on a suitable tripartite
system, which functions as a pre-probability allowing the calculation of
statistical correlations between, for example, the entrance and exit of a
channel, once a framework has been chosen so as to allow a consistent set of
probabilities. In each framework the standard notions of ordinary (classical)
information theory apply, and it makes sense to ask whether information of a
particular sort about one system is or is not present in another system.
Quantum effects arise when a single pre-probability is used to compute
statistical correlations in different incompatible frameworks, and various
constraints on the presence and absence of different kinds of information are
expressed in a set of all-or-nothing theorems which generalize or give a
precise meaning to the concept of ``no-cloning.'' These theorems are used to
discuss: the location of information in quantum channels modeled using a
mixed-state environment; the (classical-quantum) channels introduced by
Holevo; and the location of information in the physical carriers of a quantum
code. It is proposed that both channel and entanglement problems be classified
in terms of pure states (functioning as pre-probabilities) on systems of parts, with mixed bipartite entanglement and simple noisy channels belonging
to the category , a five-qubit code to the category , etc.; then by
the dimensions of the Hilbert spaces of the component parts, along with other
criteria yet to be determined.Comment: Latex 32 pages, 4 figures in text using PSTricks. Version 3: Minor
typographical errors correcte
The Definition of Mach's Principle
Two definitions of Mach's principle are proposed. Both are related to gauge
theory, are universal in scope and amount to formulations of causality that
take into account the relational nature of position, time, and size. One of
them leads directly to general relativity and may have relevance to the problem
of creating a quantum theory of gravity.Comment: To be published in Foundations of Physics as invited contribution to
Peter Mittelstaedt's 80th Birthday Festschrift. 30 page
Type-Decomposition of a Pseudo-Effect Algebra
The theory of direct decomposition of a centrally orthocomplete effect
algebra into direct summands of various types utilizes the notion of a
type-determining (TD) set. A pseudo-effect algebra (PEA) is a (possibly)
noncommutative version of an effect algebra. In this article we develop the
basic theory of centrally orthocomplete PEAs, generalize the notion of a TD set
to PEAs, and show that TD sets induce decompositions of centrally orthocomplete
PEAs into direct summands.Comment: 18 page
Unsharp Quantum Reality
The positive operator (valued) measures (POMs) allow one to generalize the notion of observable beyond the traditional one based on projection valued measures (PVMs). Here, we argue that this generalized conception of observable enables a consistent notion of unsharp reality and with it an adequate concept of joint properties. A sharp or unsharp property manifests itself as an element of sharp or unsharp reality by its tendency to become actual or to actualize a specific measurement outcome. This actualization tendency-or potentiality-of a property is quantified by the associated quantum probability. The resulting single-case interpretation of probability as a degree of reality will be explained in detail and its role in addressing the tensions between quantum and classical accounts of the physical world will be elucidated. It will be shown that potentiality can be viewed as a causal agency that evolves in a well-defined way
Realism and the wave-function
Realism -- the idea that the concepts in physical theories refer to 'things'
existing in the real world -- is introduced as a tool to analyze the status of
the wave-function. Although the physical entities are recognized by the
existence of invariant quantities, examples from classical and quantum physics
suggest that not all the theoretical terms refer to the entities: some terms
refer to properties of the entities, and some terms have only an epistemic
function. In particular, it is argued that the wave-function may be written in
terms of classical non-referring and epistemic terms. The implications for
realist interpretations of quantum mechanics and on the teaching of quantum
physics are examined.Comment: No figure
The final stages of slip and volcanism on an oceanic detachment fault at 13°48âČN, MidâAtlantic Ridge
Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 19 (2018): 3115-3127, doi:10.1029/2018GC007536.While processes associated with initiation and maintenance of oceanic detachment faults are becoming better constrained, much less is known about the tectonic and magmatic conditions that lead to fault abandonment. Here we present results from nearâbottom investigations using the submersible Alvin and autonomous underwater vehicle Sentry at a recently extinct detachment fault near 13°48âČN, MidâAtlantic Ridge, that allow documentation of the final stages of fault activity and magmatism. Seafloor imagery, sampling, and nearâbottom magnetic data show that the detachment footwall is intersected by an ~850 mâwide volcanic outcrop including pillow lavas. Saturation pressures in these vesicular basalts, based on dissolved H2O and CO2, are less than their collection pressures, which could be explained by eruption at a shallower level than their present depth. Subâbottom profiles reveal that sediment thickness, a loose proxy for seafloor age, is ~2 m greater on top of the volcanic terrain than on the footwall adjacent to the hangingâwall cutoff. This difference could be explained by currentâdriven erosion in the axial valley or by continued slip after volcanic emplacement, on either a newly formed or preâexisting fault. Since current speeds near the footwall are unlikely to be sufficient to cause significant erosion, we favor the hypothesis that detachment slip continued after the episode of magmatism, consistent with growing evidence that oceanic detachments can continue to slip despite hosting magmatic intrusions.National Science Foundation (NSF) Grant Numbers: OCEâ1259218, OCEâ1260578, OCEâ17365472019-03-1
The development of path integration: combining estimations of distance and heading
Efficient daily navigation is underpinned by path integration, the mechanism by which we use self-movement information to update our position in space. This process is well-understood in adulthood, but there has been relatively little study of path integration in childhood, leading to an underrepresentation in accounts of navigational development. Previous research has shown that calculation of distance and heading both tend to be less accurate in children as they are in adults, although there have been no studies of the combined calculation of distance and heading that typifies naturalistic path integration. In the present study 5-year-olds and 7-year-olds took part in a triangle-completion task, where they were required to return to the startpoint of a multi-element path using only idiothetic information. Performance was compared to a sample of adult participants, who were found to be more accurate than children on measures of landing error, heading error, and distance error. 7-year-olds were significantly more accurate than 5-year-olds on measures of landing error and heading error, although the difference between groups was much smaller for distance error. All measures were reliably correlated with age, demonstrating a clear development of path integration abilities within the age range tested. Taken together, these data make a strong case for the inclusion of path integration within developmental models of spatial navigational processing
- âŠ