193 research outputs found

    Seismic Anisotropy of Temperate Ice in Polar Ice Sheets

    Get PDF
    We present a series of simple shear numerical simulations of dynamic recrystallization of two‐phase nonlinear viscous materials that represent temperate ice. First, we investigate the effect of the presence of water on the resulting microstructures and, second, how water influences on P wave (Vp) and fast S wave (Vs) velocities. Regardless the water percentage, all simulations evolve from a random fabric to a vertical single maximum. For a purely solid aggregate, the highest Vp quickly aligns with the maximum c‐axis orientation. At the same time, the maximum c‐axis development reduces Vs in this orientation. When water is present, the developed maximum c‐axis orientation is less intense, which results in lower Vp and Vs. At high percentage of water, Vp does not align with the maximum c‐axis orientation. If the bulk modulus of ice is assumed for the water phase (i.e., implying that water is at high pressure), we find a remarkable decrease of Vs while Vp remains close to the value for purely solid ice. These results suggest that the decrease in Vs observed at the base of the ice sheets could be explained by the presence of water at elevated pressure, which would reside in isolated pockets at grain triple junctions. Under these conditions water would not favor sliding between ice grains. However, if we consider that deformation dominates over recrystallization, water pockets get continuously stretched, allowing water films to be located at grain boundaries. This configuration would modify and even overprint the maximum c‐axis‐dependent orientation and the magnitude of seismic anisotropy

    Predicting prescribed magnification

    Get PDF
    Aim: To determine the best method of estimating the optimum magnification needed by visually impaired patients. Methods: The magnification of low vision aids prescribed to 187 presbyopic visually impaired patients for reading newspapers or books was compared with logMAR distance and near acuity (at 25 cm) and magnification predicted by +4 D step near additions. Results: Distance letter (r = 0.58) and near word visual acuity (r = 0.67) were strongly correlated to the prescribed magnification as were predictive formulae based on these measures. Prediction using the effect of proximal magnification resulted in a similar correlation (r = 0.67) and prediction was poorer in those who did not benefit from proximal magnification. The difference between prescribed and predicted magnification was found to be unrelated to the condition causing visual impairment (F = 2.57, p = 0.08), the central visual field status (F = 0.57, p = 0.57) and patient psychology (F = 0.44, p = 0.51), but was higher in those prescribed stand magnifiers than high near additions (F = 5.99, p < 0.01). Conclusions: The magnification necessary to perform normal visual tasks can be predicted in the majority of cases using visual acuity measures, although measuring the effect of proximal magnification demonstrates the effect of stronger glasses and identifies those in whom prescribed magnification is more difficult to predict

    Asymmetric rolling of interstitial-free steel using differential roll diameters. Part II : microstructure and annealing effects

    Full text link
    The effects of annealing on the microstructure, texture, tensile properties, and R value evolution of an IF steel sheet after room-temperature symmetric and asymmetric rolling were examined. Simulations were carried out to obtain R values from the experimental textures using the viscoplastic self-consistent polycrystal plasticity model. The investigation revealed the variations in the textures due to annealing and symmetric/asymmetric rolling and showed that the R values correlate strongly with the evolution of the texture. An optimum heat treatment for the balance of strength, ductility, and deep drawability was found to be at 873 K (600 _C) for 30 minutes

    Factors influencing the implementation, adoption, use, sustainability and scalability of eLearning for family medicine specialty training:A systematic review protocol

    Get PDF
    Background In 2013, there was a shortage of approximately 7.2 million health workers worldwide, which is larger among family physicians than among specialists. eLearning could provide a potential solution to some of these global workforce challenges. However, there is little evidence on factors facilitating or hindering implementation, adoption, use, scalability and sustainability of eLearning. This review aims to synthesise results from qualitative and mixed methods studies to provide insight on factors influencing implementation of eLearning for family medicine specialty education and training. Additionally, this review aims to identify the actions needed to increase effectiveness of eLearning and identify the strategies required to improve eLearning implementation, adoption, use, sustainability and scalability for family medicine speciality education and training. Methods A systematic search will be conducted across a range of databases for qualitative studies focusing on experiences, barriers, facilitators, and other factors related to the implementation, adoption, use, sustainability and scalability of eLearning for family medicine specialty education and training. Studies will be synthesised by using the framework analysis approach. Discussion This study will contribute to the evaluation of eLearning implementation, adoption, use, sustainability and scalability for family medicine specialty training and education and the development of eLearning guidelines for postgraduate medical education

    The Adaptor Molecule Nck Localizes the WAVE Complex to Promote Actin Polymerization during CEACAM3-Mediated Phagocytosis of Bacteria

    Get PDF
    Background: CEACAM3 is a granulocyte receptor mediating the opsonin-independent recognition and phagocytosis of human-restricted CEACAM-binding bacteria. CEACAM3 function depends on an intracellular immunoreceptor tyrosine-based activation motif (ITAM)-like sequence that is tyrosine phosphorylated by Src family kinases upon receptor engagement. The phosphorylated ITAM-like sequence triggers GTP-loading of Rac by directly associating with the guanine nucleotide exchange factor (GEF) Vav. Rac stimulation in turn is critical for actin cytoskeleton rearrangements that generate lamellipodial protrusions and lead to bacterial uptake. Principal Findings: In our present study we provide biochemical and microscopic evidence that the adaptor proteins Nck1 and Nck2, but not CrkL, Grb2 or SLP-76, bind to tyrosine phosphorylated CEACAM3. The association is phosphorylation-dependent and requires the Nck SH2 domain. Overexpression of the isolated Nck1 SH2 domain, RNAi-mediated knock-down of Nck1, or genetic deletion of Nck1 and Nck2 interfere with CEACAM3-mediated bacterial internalization and with the formation of lamellipodial protrusions. Nck is constitutively associated with WAVE2 and directs the actin nucleation promoting WAVE complex to tyrosine phosphorylated CEACAM3. In turn, dominant-negative WAVE2 as well as shRNA-mediated knock-down of WAVE2 or the WAVE-complex component Nap1 reduce internalization of bacteria. Conclusions: Our results provide novel mechanistic insight into CEACAM3-initiated phagocytosis. We suggest that the CEACAM3 ITAM-like sequence is optimized to co-ordinate a minimal set of cellular factors needed to efficiently trigger actin-based lamellipodial protrusions and rapid pathogen engulfment
    corecore