496 research outputs found

    Más allá del conocimiento: los desafíos epistemológicos y sociales de la enseñanza mediante el cambio conceptual

    Get PDF
    The focus of this paper is on the generic assessment practices teachers need to adopt in order to support the shift in perspective about classroom management. This research show that actions, practices, products and discourse patterns of the classroom can provide the necessary assessment information in the epistemic, cognitive, and social domains teachers need to facilitate science learning

    Spinning compact binary inspiral II: Conservative angular dynamics

    Get PDF
    We establish the evolution equations of the set of independent variables characterizing the 2PN rigorous conservative dynamics of a spinning compact binary, with the inclusion of the leading order spin-orbit, spin-spin and mass quadrupole - mass monopole effects, for generic (noncircular, nonspherical) orbits. More specifically, we give a closed system of first order ordinary differential equations for the orbital elements of the osculating ellipse and for the angles characterizing the spin orientations with respect to the osculating orbit. We also prove that (i) the relative angle of the spins stays constant for equal mass black holes, irrespective of their orientation, and (ii) the special configuration of equal mass black holes with equal, but antialigned spins, both laying in the plane of motion (leading to the largest recoil found in numerical simulations) is preserved at 2PN level of accuracy, with leading order spin-orbit, spin-spin and mass quadrupolar contributions included.Comment: v2: 19 pages, extended, improved, published versio

    Intrinsic Size OF Sgr A*: 72 Schwarzschild Radii

    Get PDF
    Recent proper motion studies of stars at the very center of the Galaxy strongly suggest that Sagittarius (Sgr) A*, the compact nonthermal radio source at the Galactic Center, is a 2.5 million solar mass black hole. By means of near-simultaneous multi-wavelength Very Long Baseline Array measurements, we determine for the first time the intrinsic size and shape of Sgr A* to be 72 Rsc by < 20 Rsc, with the major axis oriented essentially north-south, where Rsc (= 7.5 x 10^{11} cm) is the Schwarzschild radius for a 2.5 million solar mass black hole. Contrary to previous expectation that the intrinsic structure of Sgr A* is observable only at wavelengths shorter than 1 mm, we can discern the intrinsic source size at 7 mm because (1) the scattering size along the minor axis is half that along the major axis, and (2) the near simultaneous multi-wavelength mapping of Sgr A* with the same interferometer makes it possible to extrapolate precisely the minor axis scattering angle at 7 mm. The intrinsic size and shape place direct constraints on the various emission models for Sgr A*. In particular, the advection dominated accretion flow model may have to incorporate a radio jet in order to account for the structure of Sgr A*.Comment: 15 pages including 2 ps figures and 1 table, to appear in ApJ Letter

    The Structure of the Homunculus. III. Forming a Disk and Bipolar Lobes in a Rotating Surface Explosion

    Full text link
    We present a semi-analytic model for shaping the nebula around eta Carinae that accounts for the simultaneous production of bipolar lobes and an equatorial disk through a rotating surface explosion. Material is launched normal to the surface of an oblate rotating star with an initial kick velocity that scales approximately with the local escape speed. Thereafter, ejecta follow ballistic orbital trajectories, feeling only a central force corresponding to a radiatively reduced gravity. Our model is conceptually similar to the wind-compressed disk model of Bjorkman & Cassinelli, but we modify it to an explosion instead of a steady line-driven wind, we include a rotationally-distorted star, and we treat the dynamics somewhat differently. Continuum-driving avoids the disk inhibition that normally operates in line-driven winds. Our model provides a simple method by which rotating hot stars can simultaneously produce intrinsically bipolar and equatorial mass ejections, without an aspherical environment or magnetic fields. Although motivated by eta Carinae, the model may have generic application to other LBVs, B[e] stars, or SN1987A's nebula. When near-Eddington radiative driving is less influential, our model generalizes to produce bipolar morphologies without disks, as seen in many PNe.Comment: ApJ accepted, 9 page

    Ram pressure stripping and galaxy orbits: The case of the Virgo cluster

    Full text link
    We investigate the role of ram pressure stripping in the Virgo cluster using N-body simulations. Radial orbits within the Virgo cluster's gravitational potential are modeled and analyzed with respect to ram pressure stripping. The N-body model consists of 10000 gas cloud complexes which can have inelastic collisions. Ram pressure is modeled as an additional acceleration on the clouds located at the surface of the gas distribution in the direction of the galaxy's motion within the cluster. We made several simulations changing the orbital parameters in order to recover different stripping scenarios using realistic temporal ram pressure profiles. We investigate systematically the influence of the inclination angle between the disk and the orbital plane of the galaxy on the gas dynamics. We show that ram pressure can lead to a temporary increase of the central gas surface density. In some cases a considerable part of the total atomic gas mass (several 10^8 M_solar) can fall back onto the galactic disk after the stripping event. A quantitative relation between the orbit parameters and the resulting HI deficiency is derived containing explicitly the inclination angle between the disk and the orbital plane. The comparison between existing HI observations and the results of our simulations shows that the HI deficiency depends strongly on galaxy orbits. It is concluded that the scenario where ram pressure stripping is responsible for the observed HI deficiency is consistent with all HI 21cm observations in the Virgo cluster.Comment: 29 pages with 21 figures. Accepted for publication in Ap

    Public perception and knowledge on nanotechnology: A study based on a citizen science approach

    Get PDF
    Even with the widespread use of nanomaterials (NMs) in everyday life, consumer knowledge about the functionality, benefits, and possible dangers of nanotechnology (NT) is still modest. As with any developing technology, its public perception has direct implications on future policies and has to be taken into account by academia and industry alike. As part of the “Nan-O-Style” interdisciplinary research project, an online survey was conducted using a Citizen Science-guided approach. The main goal was to evaluate the current levels of knowledge and the attitude towards NT among the general Austrian public and to determine how differing sociodemographic factors may affect these. Over the course of 17 months, a total of 1067 responses were collected and quantitatively analysed. We found that while Austrians display a generally optimistic view and a positive attitude towards NT, there are still remaining concerns about its safety and possible risks. Participants expressed great desire for more information about NT and its applications, as well as for clear labelling and transparency of products containing NMs. Notably, we found that age did not affect the general attitude towards NT nor the levels of NT awareness. While participants with a university degree were generally more knowledgeable on this specific topic, surprisingly, there were no significant differences in the attitude towards NT among people from different educational backgrounds. Similar to previous studies, we observed that male participants demonstrated a more positive attitude towards NT and scored slightly higher in our NT quiz compared to female participants. However, female participants voiced greater desire for more information and transparency regarding NMs. Interestingly, while participants with a negative attitude towards NT scored lowest on the NT quiz, they also expressed the least interest in receiving more NT-related information. This illustrates a difficulty in mitigating public aversion solely by providing more information

    Resolved Mid-Infrared Imaging of AGN: An Isotropic Measure of Intrinsic Power

    Get PDF
    We present a strong correlation between 12μm mid-IR and intrinsic X-ray (2–10 keV) luminosities of local Seyferts. This work is based on new diffraction-limited mid-IR observations with the 8-m Very Large Telescope (VLT), resulting in the least-contaminated core fluxes of 42 Seyferts to date

    HI deficiency in the galaxy cluster ACO 3627. ATCA observations in the Great Attractor region

    Get PDF
    ATCA 21 cm HI observations of the rich galaxy cluster ACO 3627 in the Great Attractor region are presented. Three fields of 30' diameter located within one Abell radius of ACO 3627 were observed with a resolution of 15'' and an rms noise of \sim 1 mJy/beam. Only two galaxies were detected in these fields. We compare their HI distribution to new optical R-band images and discuss their velocity fields. The first galaxy is a gas-rich unperturbed spiral whereas the second shows a peculiar HI distribution. The estimated 3-sigma HI mass limit of our observations is \sim 7 x 10^8 M_{\odot} for a line width of 150 km s^{-1}. The non-detection of a considerable number of luminous spiral galaxies indicates that the spiral galaxies are HI deficient. The low detection rate is comparable to the HI deficient Coma cluster (Bravo-Alfaro et al. 2000). ACO 3627 is a bright X-ray cluster. We therefore suspect that ram pressure stripping is responsible for the HI deficiency of the bright cluster spirals.Comment: 9 pages with 7 figures; A&A, in pres

    Advection-Dominated Accretion Model of Sagittarius A*: Evidence for a Black Hole at the Galactic Center

    Full text link
    Sgr A* at the Galactic Center is a puzzling source. It has a mass M=(2.5+/-0.4) x 10^6 solar masses which makes it an excellent black hole candidate. Observations of stellar winds and other gas flows in its vicinity suggest a mass accretion rate approximately few x 10^{-6} solar masses per year. However, such an accretion rate would imply a luminosity > 10^{40} erg/s if the radiative efficiency is the usual 10 percent, whereas observations indicate a bolometric luminosity <10^{37} erg/s. The spectrum of Sgr A* is unusual, with emission extending over many decades of wavelength. We present a model of Sgr A* which is based on a two-temperature optically-thin advection-dominated accretion flow. The model is consistent with the estimated mass and accretion rate, and fits the observed fluxes in the cm/mm and X-ray bands as well as upper limits in the sub-mm and infrared bands; the fit is less good in the radio below 86 GHz and in gamma-rays above 100 MeV. The very low luminosity of Sgr A* is explained naturally in the model by means of advection. Most of the viscously dissipated energy is advected into the central mass by the accreting gas, and therefore the radiative efficiency is extremely low, approximately 5 x 10^{-6}. A critical element of the model is the presence of an event horizon at the center which swallows the advected energy. The success of the model could thus be viewed as confirmation that Sgr A* is a black hole.Comment: 41 pages (Latex) including 6 Figures and 2 Tables. Final Revised Version changes to text, tables and figures. ApJ, 492, in pres

    Mechanisms of particles in sensitization, effector function and therapy of allergic disease

    Get PDF
    Humans have always been in contact with natural airborne particles from many sources including biologic particulate matter (PM) which can exhibit allergenic properties. With industrialization, anthropogenic and combustion-derived particles have become a major fraction. Currently, an ever-growing number of diverse and innovative materials containing engineered nanoparticles (NPs) are being developed with great expectations in technology and medicine. Nanomaterials have entered everyday products including cosmetics, textiles, electronics, sports equipment, as well as food, and food packaging. As part of natural evolution humans have adapted to the exposure to particulate matter, aiming to protect the individual's integrity and health. At the respiratory barrier, complications can arise, when allergic sensitization and pulmonary diseases occur in response to particle exposure. Particulate matter in the form of plant pollen, dust mites feces, animal dander, but also aerosols arising from industrial processes in occupational settings including diverse mixtures thereof can exert such effects. This review article gives an overview of the allergic immune response and addresses specifically the mechanisms of particulates in the context of allergic sensitization, effector function and therapy. In regard of the first theme (i), an overview on exposure to particulates and the functionalities of the relevant immune cells involved in allergic sensitization as well as their interactions in innate and adaptive responses are described. As relevant for human disease, we aim to outline (ii) the potential effector mechanisms that lead to the aggravation of an ongoing immune deviation (such as asthma, chronic obstructive pulmonary disease, etc.) by inhaled particulates, including NPs. Even though adverse effects can be exerted by (nano)particles, leading to allergic sensitization, and the exacerbation of allergic symptoms, promising potential has been shown for their use in (iii) therapeutic approaches of allergic disease, for example as adjuvants. Hence, allergen-specific immunotherapy (AIT) is introduced and the role of adjuvants such as alum as well as the current understanding of their mechanisms of action is reviewed. Finally, future prospects of nanomedicines in allergy treatment are described, which involve modern platform technologies combining immunomodulatory effects at several (immuno-)functional levels
    corecore